
An Adaptive Software-based Deadlock Recovery Technique

M. Mirza-Aghatabar2, A. Tavakkol1,2, H. Sarbazi-Azad1,2, A. Nayebi2
1IPM School of Computer Science, Tehran, Iran

2Department of Computer Eng. of Sharif Uni. of Technology, Tehran, Iran
aghatabr@ce.sharif.edu, tavakkol@ce.sharif.edu, azad@ipm.ir, nayebi@ce.sharif.edu

Abstract

Deadlock management has a direct effect on
making a reliable connection between processing
nodes in parallel computers. Networks using wormhole
switching are the most vulnerable networks to
deadlock occurrence due to chained blocking nature of
this switching method. Different hardware based
techniques for deadlock recovery were proposed in the
literature which have considerable design complexity,
while deadlock occurrence in a network is rare. A
software based technique can reduce this cost while
preserving performance. The only software based
technique proposed in the literature is static and
independent of network workload and working
conditions. In this paper we present an adaptive
software based technique for deadlock recovery, and
validate its performance in the presence of different
traffic patterns including uniform, hot spot, local and
first matrix transpose (FMT) patterns in 8-ary 3-cube
network (torus). Simulation results exhibit about 21%,
20%, 98% and 20% performance improvement under
local, FMT, hotspot and uniform traffic patterns,
respectively.

1. Introduction

Nowadays, lots of products, such as cell phones and
portable computers are implemented on a silicon chip
[2]. The number of transistors per chip will increase
beyond billions, due to technology scaling, at the end
of this decade [1]. Therefore, new methods should be
employed to manage such huge number of transistors
on a chip. The Network-on-Chip (NoC)
interconnecting different IPs and parts in a System-on-
Chip (SoC) is the main potential implementation
approach to implement such a huge chip. NoCs can
make SoCs structured, reusable, scalable, and high
performance [3]. Many topologies with different
capabilities have been proposed for NoCs including the
mesh [6], torus [5], Octagon [9], SPIN [10], BFT [11].

The routing algorithm is one of the most important
issues for NoC designers which determines the path
from the source to destination node. Routing
algorithms can be classified according to their
adaptivity level. A routing algorithm can be either
deterministic or adaptive. Adaptive routing algorithms
use the information about network traffic and channel
status to avoid congested or faulty regions of the
network [6]. Among different routing algorithms, the
FAR1 algorithm has the best throughput with the cost
of using more virtual channels to avoid deadlock
occurrence; as an exemplification, FAR routing for the
torus network requires at least 3 virtual channels per
physical channel to be deadlock-free [6].

Switching method is another important issue for
NoC designers and defines the way in which messages
visit and use intermediate routers, buffers, and
switches. Different switching methods are introduced
in the literature to improve the performance of the
network. Wormhole [10] and virtual cut-through [11]
have become the most widely used switching
techniques for multi-computers and distributed shared-
memory multiprocessors, due to their lower buffering
requirements and better usage of network resources.
Moreover, these switching methods provide high data
transmission rate as a result of their pipeline nature, but
this property makes wormhole susceptible to deadlock
occurrence and increment of blocking time. Deadlock
is a state of the network where no messages can
advance along its path in the network because each
message requires a channel occupied by another
message [6].

There are two main approaches to resolve deadlock
problem [6]: Deadlock Avoidance techniques where
resources are granted to packets only if the resulting
global state is safe (deadlock free); and Deadlock
Recovery techniques where resources are granted to
packets without any check and therefore, some
detection mechanism must be provided. If deadlock is

1 Fully Adaptive Routing

detected, some resources are de-allocated and granted
to other packets in order to break cyclic dependency.

Deadlock avoidance based routing algorithms do
not use resources efficiently compared to the deadlock
recovery based ones. Also it was shown that deadlocks
rarely occur when sufficient routing freedom is
provided, but they are more likely to occur when the
network is close to or beyond saturation [12]. Thus, the
cost paid to avoid deadlocks is usually more than
achieved performance especially when the network is
not close to saturation region (note that this is usually
the case because a network should approach saturation
region). To illustrate, authors in [21-23] have shown
that deadlock recovery based routing algorithms can be
used to eliminate the extra hardware cost and gain a
considerable cost-performance. In fact, deadlock
recovery based routing algorithms have the highest
adaptivity for routing and can use all available virtual
channels associated to each physical channel to route
messages, and thus, in some papers they are called
TFAR2.

In this paper we will introduce a new Adaptive
soFtware-Based deAdlock Recovery (AFBAR)
technique for TFAR in wormhole switched networks.
In section 2, related works will be reviewed. Section 3
provides details of the AFBAR technique. Results of
performance evaluation will be proposed in section 4.
Finally in Section 5, some concluding remarks are
given.

2. Related Works

Deadlock recovery routing algorithms can be

classified into two groups: hardware-based and
software-based algorithms. First we describe two
hardware-based algorithms and then a software-based
routing algorithm will be described.

One deadlock recovery-based algorithm,
Compressionless Routing (CR) algorithm, was
proposed in [14]. Let SDd be the distance between
source and destination nodes. The source node can
determine whether that the header flit has reached the
destination node or not: When the number of
transmitted flits in the source node is equal to SDd , it
means that the header flit has reached the destination,
otherwise maybe deadlock has occurred. In CR, the
source node keeps track of the injected message and
detects if it has reached the destination node or not. If
the message length is shorter than SDd , then stuffing
flits will be appended at the end of the message in the
source node to determine that the header flit has

2 True Fully Adaptive Routing

reached to destination or not. If it has reached, no
deadlocks can happen. If not, and the message is
blocked for some time, the source node breaks down
the partial message path, kills the deadlocked message,
and then tries sending it again later. So the CR uses a
regressive technique.

Another deadlock recovery scheme, called DISHA,
was proposed in [15]. This method was proposed to
tackle the disadvantages of CR, i.e. (1) increasing the
message length to more than its actual size which
decreases effective channel utilization -when the packet
size is small, compared to the network diameter, or the
buffers at routers are deep, the overhead due to padding is
large; (2) Killing deadlocked messages and re-injecting
them increases message latency. DISHA provides a
central buffer for each node that is not dedicated to any
specific channel and calls it Deadlock Buffer (DB).
The collection of these DBs in the nodes creates a new
floating network which can be used to route the
deadlocked messages. Each input virtual channel is
equipped with a counter. When a message is blocked
for more than a threshold time, it is assumed the
message is in a potential deadlock situation. Now the
router copies the deadlocked message into its DB and
routs it via in the floating network containing the DBs
of intermediate routers to the destination node. When a
router detects a deadlocked message in its DB,
preempts the needed output channel to route that
message and after routing the deadlocked message, the
channel can be used by non-deadlocked messages. It
means deadlocked messages in DBs, have a higher
priority in preempting the output channels for routing.
As DISHA does not kill the deadlocked messages, it is
a progressive technique. Progressive deadlock
recovery-based techniques usually increase
performance in comparison with deadlock avoidance-
based techniques, because they require less dedicated
resources to handle deadlocks [15].

Martinez et al., in [13], introduced a software-based
routing technique for deadlock recovery routing
algorithms. They proposed a new progressive approach
to handle deadlocks. It uses message injection
limitation mechanism [16] used to prevent
performance degradation near the saturation point and
especially reduce the probability of deadlock
occurrence under TFAR. Moreover, in this method a
counter is associated with each output physical
channel. This counter is incremented in each cycle and
is reset when a flit is transmitted across the physical
channel. When the value of counter exceeds a
predetermined threshold, an inactivity flag of that
physical channel is set. Every time a message is routed,
if all the feasible virtual output channels are busy, then
the inactivity flags associated with the corresponding

physical output channels are checked. If all of these
flags are set, then there is no activity through any of
the feasible physical output channels, and the message
is presumed to be involved in a deadlock. Thus the
message is taken out from the network by the current
Processing Element (PE). If the software messaging
layer detects a message with the destination address
different from that of the current node, it must re-inject
that message to the network at a later time.

The proposed technique in [13]: (1) requires a very
small amount of hardware due to no dedicated buffer
resources to handle deadlocks, (2) eliminates
performance degradation at saturation point with
message injection limitation, (3) reduces the frequency
of deadlock, and (4) uses a new deadlock detection
technique which considerably reduces the probability
of false deadlock detection. The performance of
mentioned technique is better than CR, and is about
that of the progressive deadlock recovery techniques
(like DISHA), assuming that both of them use the same
injection limitation and deadlock detection
mechanisms and that the additional router complexity
required in DISHA does not impact clock frequency
[13].

Although the last technique has the mentioned
advantages, but using a fixed and static threshold value
for deadlock detection for each node and each output
physical channel is not fair, since under non-uniform
traffic patterns the blocking time of packets and
utilization of each physical channel depend on the
position of each node in the network topology. The
fixed value of threshold may change with regard to
traffic rate around a node for each physical channel. As
an exemplification, under hotspot traffic pattern, traffic
rate around the hot node is high, so the blocking
probability and blocking duration is high. But it does
not mean all of these blocked messages are engaged in
a deadlock; consequently, with a fixed value of
threshold, many blocked messages will be detected as
deadlock messages. In fact the best threshold value for
each node depends on the traffic rate around its
channels. Thus, a node with high traffic around itself
should have more threshold value. In this paper we
have implemented the message injection limitation
technique but we have used a function to dynamically
determine the threshold value for each physical
channel in each node in order to detect deadlocks. Our
results depict a lower number of detected deadlocks
under different traffic patterns, especially under
hotspot traffic pattern and exhibit a better performance
in spite of using a lower number of virtual channels.

3. AFBAR technique

Different applications, during execution, exert

different traffic patterns to the network. As a
consequence, a predetermined and fixed value of
threshold for each node (each physical channel of
node) can degrade the performance of the network by
increasing the number of mistakenly detected
deadlocks. When the traffic rate increases over the
channels of a typical node, the blocking time of
messages will increase, so the threshold value for these
physical channels should increase to avoid mistakes in
deadlock detection. Figure 1 shows the deadlock
detection reduction using AFBAR in comparison with
the described technique of [13]. The implementation
details of AFBAR will be described later in this
section. To simplify the explanation process we
assume that the network a is k-ary n-cube.

Figure 1: Deadlock Detection Reduction

AFBAR is An Adaptive soFtware-Based deAdlock
Recovery technique which uses local traffic
information of each node to dynamically set a
threshold value for each physical channel for deadlock
detection during the execution. Like [13] when an
intermediate router detects a message to be engaged in
deadlock, sends the message to the current PE and the
software messaging layer re-injects the message into
the network later. Unlike [13] which uses a static re-
injection time, AFBAR dynamically tunes this value
according to local information and average utilization
of the channels.

AFBAR continuously monitors each physical
channel of nodes to determine the traffic rate around
nodes. Then, it updates the threshold value for each
physical channel adaptively after a period of time (PT).
Here this period is set to be eight times of message
length. We define a channel utilization parameter for
channel monitoring in a period of time as:

)1(
2

0
∑

=

=
n

i
itotal UU

)2(n Utilizatio
total

i
i U

URatio =

where n is the network dimension of the k-ary n-cube
and Ui is the number of transmitted flits per physical
channel.

AFBAR dedicates another counter (instead of the
counter used for deadlock detection) for each physical
channel that is incremented by one when a flit is
transmitted on the corresponding physical channel.
Then, at the end of PT, using equations (1) and (2)
channel utilization for each physical channel is
calculated. It is clear that the channel with highest
utilization rate sees the most traffic rate around and its
threshold value must be increased.

Generally, when a node has n bidirectional physical
channels and the traffic is distributed uniformly in the
network, then the traffic rate of each physical channel
is a portion of the total traffic of the mentioned node.
This ratio can be estimated as follows:

)3(1
0 n

R =

Thus, in a k-ary 2-cube topology where each node has
4 bidirectional channels, we have: 25.00 =R

Now, using the deviation from the uniform
ratio (R0), AFBAR updates the next threshold value to
tune it according to the traffic rate of each physical
channel and when the deviation is negligible or zero,
the threshold (like [13]) is set to four times of message
length. AFBAR uses the following equations to update
the threshold value for each physical channel:

)4(
5.0R , 0.5

R1 , 1
15.0

i

i

 ,

0

0

















−<′−
′<

<′<−′

=′⇒
−

=′
ii

i
i

i

RR
R

R
RRatioCurrent

R

)5(
0R ,)1(4

0)21(4

i

 ,
'













<′′+××

′<×+××
=

i

ii
i RgthmessageLen

RRgthmessageLen
T

As mentioned before, another way that leads to more

adaptivity is the use of dynamically tuned re-injection
time. In [13] this factor has been assume to be constant
(200 cycles), but we will dynamically change it using
equations (6, 7, 8).

)6(gthmessageLenT injectre ×=− α

)7(
Vn

UU total

×
=

)8(

4.012

9.02.06

2.01.02

1.01

























<

<<

<<

<

=

U

U

U

U

α

Where V is the number of virtual channels per physical
channel.

4. Experimental Results

In this section, we will evaluate AFBAR under
different traffic loads and compare its performance
with software-based deadlock recovery (called
STFAR) and FAR algorithms. The message length is
32 flits and as aforementioned our network is 8-ary 3-
cube. Figure 2 shows the performance comparison of
these algorithms under different traffic loads including:
Local, Uniform, HotSpot and First Matrix Transpose
(FMT). The best performance under all traffic patterns
is achieved by AFBAR with 3 virtual channels.
Although the performance of FAR is better than
AFBAR with 1 virtual channel, but the main constraint
of FAR is that it needs at least 3 virtual channels to be
deadlock free. This requirement consumes more power
in comparison with AFBAR using 1 virtual channel.

As can be seen if Figure 2, the performance gap
between STFAR and AFBAR with 3 virtual channels
under uniform traffic pattern is small, hence we can
use a static value for Ti like [21]. However, the uniform
traffic load is not realistic, and different applications
usually exert non-uniform loads.

Table 1. Comparison of the number of

detected deadlocks
Num. of Detected Deadlock

1Virtuall Channel 3Virtuall Channel
Traffic

Patterns Rate

STFAR AFBAR STFAR AFBAR
Uniform --- 161 82 0 0

20% 226 161 0 0
40% 144 89 0 0

FMT

60% 121 67 2 0
20% 903 419 618 282
40% 2407 1095 1596 984

Local

60% 5709 3547 3124 2002
5% 208 29 5 0
10% 669 324 414 35

Hotspot

15% 810 505 541 162
Another important metric that is directly related to

the performance is the number of detected deadlocks.
Table 1 shows the number of detected deadlocks using
AFBAR and STFAR routing algorithms. It is clear that
the number of detected deadlocks with AFBAR is
lower than STFAR which can lead to a better
performance.

There are two important points about the local
traffic load:

1) Under local traffic load (with a locality diameter
of 1) lots of messages are sent to the neighbors, and
such high level of locality in the traffic increases the
probability of deadlock creation. It is clear from Table
1 that the higher number of detected deadlocks is

resulted for this traffic pattern which can lead to
performance degradation.

2) The short distance between the source and
destination nodes under local traffic model results in a
lower network latency and thus performance
improvement. Figure 3 reveals this fact.

Table 2. Performance Improvement

Traffic Patterns Performance Improvement
Number of

Virtual
Channels

1 Virtual
Channel

3 Virtual
Channels

Uniform 20% 4%
FMT 20.5% 10%
Local 21% 4.8%

Hot Spot 20.5% 97.7%
Table 2 shows the performance improvement of the

proposed routing algorithm (AFBAR) in comparison
with STFAR under different traffic loads. The best
performance improvement is achieved under hotspot
traffic loads, due to the pipeline nature of wormhole
switching and high blocking time under this type of
traffic loads as mentioned before.

5. Conclusions

Deadlock management is essential for providing a
reliable communication path between processing
elements in interconnection networks of parallel
computers. Among different switching methods for
interconnection networks, wormhole switching is the
most vulnerable to deadlock occurrence due to its
pipeline nature. So some mechanisms should be used
to resolve deadlocks.

In this paper, we focused on the software-based
deadlock recovery method (STFAR) which has been
described in [13]. The deadlock detection mechanism
used in [13] has a static nature to detect deadlocks at
each node. Different traffic patterns generated by
different applications require different treatment and
thus using a static value in deadlock detection
mechanism is not suitable. Our results showed the poor
performance of STFAR under different traffic patterns
and proposed an adaptive deadlock recovery method
called AFBAR, which improved the performance
under all traffic patterns. The performance
improvement was ranged from 20-97% for local, FMT,
HotSpot and Uniform traffic patterns.

6. References

[1] A. Allen, D. Edenfeld, W.H. Joyner, A.B. Kahng, M.
Rodgers, and Y. Zorian, “2001 Technology Roadmap for
Semiconductors,” IEEE Computer, pp. 42-53, 2002.
[2] S. Kumar, A. Jantsch, J.P. Sonion, M. Forsell, M.
Millberg, J. Oeberg, K. Tiensirja, and A. Hemani, “A

Network on Chip Architecture and Design Methodology,”
IEEE Design and Test of Computers, no.4, vol.16, pp.6-15,
1999.
[3] L. Benini and G. de Micheli, “Networks-on-Chip: A new
Paradigm for System on Chip Design,” Design Automation
and Test in Europe, IEEE computer, vol. 35, no. 1, pp. 70-78,
2002.
[4] W.J. Dally and B. Towles, “Route Packets, Not Wires:
On-Chip Interconnection Networks,” Proc. of Design
Automation Conference, pp. 683-689, 2001.
[5] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection
Networks—An Engineering Approach,” Morgan Kaufmann,
2002.
[6] F. Karim, A. Nguyen, and S. Dey, “An Interconnect
Architecture for Networking Systems on Chip,” IEEE Micro,
vol. 22, no. 5, pp 36–45, 2002.
[7] Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez,
and C. A. Zeferino, “Spin: A scalable, Packet Switched, on
Chip Micro-Network,” DATE 03 Embedded Software Forum,
pp. 70–73, 2003.
[8] Guerrier and A. Greiner, “A Generic Architecture for on
Chip Packet-Switched Interconnections,” IEEE Proceedings
of the Design, Automation and Test in Europe Conference
and Exhibition, pp. 250-256, 2000.
[9] D. Rahmati, A. E. Kiasari, S. Hessabi and H. Sarbazi-
Azad, "A Performance and Power Analysis of WK-Recursive
and Mesh Networks for Network-on-Chips," Proceedings of
the 24th International Conference on Computer Design
(ICCD), 2006.
[10] W. J. Dally and C. L. Seitz, “Deadlock-free
messagerouting in multiprocessor interconnection networks,”
IEEE Trans. on Computers, vol. C-36, no. 5, pp. 547-553,
1987.
[11] P. Kermani and L. Kleinrock, “Virtual cut-through: A
new computer communication switching technique,”
Computer Networks. Vol. 3, pp. 267-286, 1979.
[12] T.M. Pinkston and S. Warnakulasuriya, “On deadlocks
in interconnection networks,” Proc. of the 24th International
Symposium on Computer Architecture, 1997.
[13] J.M. Martinez, P. Lopez, J. Duato, and T.M. Pinkston,
“Software-based deadlock recovery techniques for true fully
adaptive routing in wormhole networks,” Proc. of
International Conference on Parallel Processing, 1997.
[14] J.H. Kim, Z. Liu, and A.A. Chien, “Compressionless
routing: A framework for adaptive and fault-tolerant
routing,” Proc. of the 21st International Symposium on
Computer Architecture, pp. 289-300, 1994.
[15] Anjan K.V. and T.M. Pinkston, “An efficient fully
adaptive deadlock recovery scheme: Disha,” Proc. of 22nd
International Symposium on Computer Architecture, pp. 201-
210, 1995.
[16] J. Duato, “Improving the efficiency of virtual channels
with time-dependent selection functions,” Future Generation
Computer Systems, no. 10, pp. 45-58, 1994.

FAR and TFAR(static & dynamic) routing algorithms Under

HotSpot10% Traffic Model

0

50

100

150

200

250

300

0.005 0.007 0.009 0.011 0.013 0.015 0.017Injection Rate

La
te

nc
y

Static_1Vch Static_3Vch FAR_3Vch
Dynamic_1Vch Dynamic_3Vch

FAR and TFAR(static & dynamic) routing algorithms Under
Uniform Traffic Model

0

50

100

150

200

250

300

0.005 0.01 0.015 0.02
Injection Rate

La
te

nc
y

Static_1Vch Static_3Vch FAR_3Vch
Dynamic_1Vch Dynamic_3Vch

FAR and TFAR(static & dynamic) routing algorithms Under
Local 40% Traffic Model

25

75

125

175

225

275

0.005 0.01 0.015 0.02 0.025 0.03
Injection Rate

La
te

nc
y

Static_1Vch Static_3Vch FAR_3Vch
Dynamic_1Vch Dynamic_3Vch

FAR and TFAR(static & dynamic) routing algorithms Under First
Matrix Transpose 40% Traffic Model

0

50

100

150

200

250

300

0.005 0.01 0.015 0.02Injection Rate

La
te

nc
y

Static_1Vch Static_3Vch FAR_3Vch
Dynamic_1Vch Dynamic_3Vch

Adaptive Deadlock Recovery routing algorithm (TFAR) with 3 Vch

0

50

100

150

200

250

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Injection Rate

La
te

nc
y

Local_20% Local_40% Local_60% Uniform
FMT_20% FMT_40% FMT_60% Hot_5%
Hot_10% Hot_15%

Figure 3. Performance comparison of TFAR under different traffic models

