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Abstract 
 

Deadlock management has a direct effect on 
making a reliable connection between processing 
nodes in parallel computers. Networks using wormhole 
switching are the most vulnerable networks to 
deadlock occurrence due to chained blocking nature of 
this switching method. Different hardware based 
techniques for deadlock recovery were proposed in the 
literature which have considerable design complexity, 
while deadlock occurrence in a network is rare. A 
software based technique can reduce this cost while 
preserving performance. The only software based 
technique proposed in the literature is static and 
independent of network workload and working 
conditions. In this paper we present an adaptive 
software based technique for deadlock recovery, and 
validate its performance in the presence of different 
traffic patterns including uniform, hot spot, local and 
first matrix transpose (FMT) patterns in 8-ary 3-cube 
network (torus). Simulation results exhibit about 21%, 
20%, 98% and 20% performance improvement under 
local, FMT, hotspot and uniform traffic patterns, 
respectively.  
 
1. Introduction 
 

Nowadays, lots of products, such as cell phones and 
portable computers are implemented on a silicon chip 
[2]. The number of transistors per chip will increase 
beyond billions, due to technology scaling, at the end 
of this decade [1]. Therefore, new methods should be 
employed to manage such huge number of transistors 
on a chip. The Network-on-Chip (NoC) 
interconnecting different IPs and parts in a System-on-
Chip (SoC) is the main potential implementation 
approach to implement such a huge chip. NoCs can 
make SoCs structured, reusable, scalable, and high 
performance [3]. Many topologies with different 
capabilities have been proposed for NoCs including the 
mesh [6], torus [5], Octagon [9], SPIN [10], BFT [11]. 

The routing algorithm is one of the most important 
issues for NoC designers which determines the path 
from the source to destination node. Routing 
algorithms can be classified according to their 
adaptivity level. A routing algorithm can be either 
deterministic or adaptive. Adaptive routing algorithms 
use the information about network traffic and channel 
status to avoid congested or faulty regions of the 
network [6]. Among different routing algorithms, the 
FAR1 algorithm has the best throughput with the cost 
of using more virtual channels to avoid deadlock 
occurrence; as an exemplification, FAR routing for the 
torus network requires at least 3 virtual channels per 
physical channel to be deadlock-free [6]. 

Switching method is another important issue for 
NoC designers and defines the way in which messages 
visit and use intermediate routers, buffers, and 
switches. Different switching methods are introduced 
in the literature to improve the performance of the 
network. Wormhole [10] and virtual cut-through [11] 
have become the most widely used switching 
techniques for multi-computers and distributed shared-
memory multiprocessors, due to their lower buffering 
requirements and better usage of network resources. 
Moreover, these switching methods provide high data 
transmission rate as a result of their pipeline nature, but 
this property makes wormhole susceptible to deadlock 
occurrence and increment of blocking time. Deadlock 
is a state of the network where no messages can 
advance along its path in the network because each 
message requires a channel occupied by another 
message [6]. 

There are two main approaches to resolve deadlock 
problem [6]: Deadlock Avoidance techniques where 
resources are granted to packets only if the resulting 
global state is safe (deadlock free); and Deadlock 
Recovery techniques where resources are granted to 
packets without any check and therefore, some 
detection mechanism must be provided. If deadlock is 
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detected, some resources are de-allocated and granted 
to other packets in order to break cyclic dependency.  

Deadlock avoidance based routing algorithms do 
not use resources efficiently compared to the deadlock 
recovery based ones. Also it was shown that deadlocks 
rarely occur when sufficient routing freedom is 
provided, but they are more likely to occur when the 
network is close to or beyond saturation [12]. Thus, the 
cost paid to avoid deadlocks is usually more than 
achieved performance especially when the network is 
not close to saturation region (note that this is usually 
the case because a network should approach saturation 
region). To illustrate, authors in [21-23] have shown 
that deadlock recovery based routing algorithms can be 
used to eliminate the extra hardware cost and gain a 
considerable cost-performance. In fact, deadlock 
recovery based routing algorithms have the highest 
adaptivity for routing and can use all available virtual 
channels associated to each physical channel to route 
messages, and thus, in some papers they are called 
TFAR2. 

In this paper we will introduce a new Adaptive 
soFtware-Based deAdlock Recovery (AFBAR) 
technique for TFAR in wormhole switched networks. 
In section 2, related works will be reviewed. Section 3 
provides details of the AFBAR technique. Results of 
performance evaluation will be proposed in section 4. 
Finally in Section 5, some concluding remarks are 
given. 
 
2. Related Works 

 
Deadlock recovery routing algorithms can be 

classified into two groups: hardware-based and 
software-based algorithms. First we describe two 
hardware-based algorithms and then a software-based 
routing algorithm will be described. 

One deadlock recovery-based algorithm, 
Compressionless Routing (CR) algorithm, was 
proposed in [14]. Let SDd be the distance between 
source and destination nodes. The source node can 
determine whether that the header flit has reached the 
destination node or not: When the number of 
transmitted flits in the source node is equal to SDd , it 
means that the header flit has reached the destination, 
otherwise maybe deadlock has occurred. In CR, the 
source node keeps track of the injected message and 
detects if it has reached the destination node or not. If 
the message length is shorter than SDd , then stuffing 
flits will be appended at the end of the message in the 
source node to determine that the header flit has 
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reached to destination or not. If it has reached, no 
deadlocks can happen. If not, and the message is 
blocked for some time, the source node breaks down 
the partial message path, kills the deadlocked message, 
and then tries sending it again later. So the CR uses a 
regressive technique. 

Another deadlock recovery scheme, called DISHA, 
was proposed in [15]. This method was proposed to 
tackle the disadvantages of CR, i.e. (1) increasing the 
message length to more than its actual size which 
decreases effective channel utilization -when the packet 
size is small, compared to the network diameter, or the 
buffers at routers are deep, the overhead due to padding is 
large; (2) Killing deadlocked messages and re-injecting 
them increases message latency. DISHA provides a 
central buffer for each node that is not dedicated to any 
specific channel and calls it Deadlock Buffer (DB). 
The collection of these DBs in the nodes creates a new 
floating network which can be used to route the 
deadlocked messages. Each input virtual channel is 
equipped with a counter. When a message is blocked 
for more than a threshold time, it is assumed the 
message is in a potential deadlock situation. Now the 
router copies the deadlocked message into its DB and 
routs it via in the floating network containing the DBs 
of intermediate routers to the destination node. When a 
router detects a deadlocked message in its DB, 
preempts the needed output channel to route that 
message and after routing the deadlocked message, the 
channel can be used by non-deadlocked messages. It 
means deadlocked messages in DBs, have a higher 
priority in preempting the output channels for routing. 
As DISHA does not kill the deadlocked messages, it is 
a progressive technique. Progressive deadlock 
recovery-based techniques usually increase 
performance in comparison with deadlock avoidance-
based techniques, because they require less dedicated 
resources to handle deadlocks [15]. 

Martinez et al., in [13], introduced a software-based 
routing technique for deadlock recovery routing 
algorithms. They proposed a new progressive approach 
to handle deadlocks. It uses message injection 
limitation mechanism [16] used to prevent 
performance degradation near the saturation point and 
especially reduce the probability of deadlock 
occurrence under TFAR. Moreover, in this method a 
counter is associated with each output physical 
channel. This counter is incremented in each cycle and 
is reset when a flit is transmitted across the physical 
channel. When the value of counter exceeds a 
predetermined threshold, an inactivity flag of that 
physical channel is set. Every time a message is routed, 
if all the feasible virtual output channels are busy, then 
the inactivity flags associated with the corresponding 



physical output channels are checked. If all of these 
flags are set, then there is no activity through any of 
the feasible physical output channels, and the message 
is presumed to be involved in a deadlock. Thus the 
message is taken out from the network by the current 
Processing Element (PE). If the software messaging 
layer detects a message with the destination address 
different from that of the current node, it must re-inject 
that message to the network at a later time. 

The proposed technique in [13]: (1) requires a very 
small amount of hardware due to no dedicated buffer 
resources to handle deadlocks, (2) eliminates 
performance degradation at saturation point with 
message injection limitation, (3) reduces the frequency 
of deadlock, and (4) uses a new deadlock detection 
technique which considerably reduces the probability 
of false deadlock detection. The performance of 
mentioned technique is better than CR, and is about 
that of the progressive deadlock recovery techniques 
(like DISHA), assuming that both of them use the same 
injection limitation and deadlock detection 
mechanisms and that the additional router complexity 
required in DISHA does not impact clock frequency 
[13]. 

Although the last technique has the mentioned 
advantages, but using a fixed and static threshold value 
for deadlock detection for each node and each output 
physical channel is not fair, since under non-uniform 
traffic patterns the blocking time of packets and 
utilization of each physical channel depend on the 
position of each node in the network topology. The 
fixed value of threshold may change with regard to 
traffic rate around a node for each physical channel. As 
an exemplification, under hotspot traffic pattern, traffic 
rate around the hot node is high, so the blocking 
probability and blocking duration is high. But it does 
not mean all of these blocked messages are engaged in 
a deadlock; consequently, with a fixed value of 
threshold, many blocked messages will be detected as 
deadlock messages. In fact the best threshold value for 
each node depends on the traffic rate around its 
channels. Thus, a node with high traffic around itself 
should have more threshold value. In this paper we 
have implemented the message injection limitation 
technique but we have used a function to dynamically 
determine the threshold value for each physical 
channel in each node in order to detect deadlocks. Our 
results depict a lower number of detected deadlocks 
under different traffic patterns, especially under 
hotspot traffic pattern and exhibit a better performance 
in spite of using a lower number of virtual channels. 

 

 
3. AFBAR technique 

 
Different applications, during execution, exert 

different traffic patterns to the network. As a 
consequence, a predetermined and fixed value of 
threshold for each node (each physical channel of 
node) can degrade the performance of the network by 
increasing the number of mistakenly detected 
deadlocks. When the traffic rate increases over the 
channels of a typical node, the blocking time of 
messages will increase, so the threshold value for these 
physical channels should increase to avoid mistakes in 
deadlock detection. Figure 1 shows the deadlock 
detection reduction using AFBAR in comparison with 
the described technique of [13]. The implementation 
details of AFBAR will be described later in this 
section. To simplify the explanation process we 
assume that the network a is k-ary n-cube.  

 
Figure 1: Deadlock Detection Reduction 

AFBAR is An Adaptive soFtware-Based deAdlock 
Recovery technique which uses local traffic 
information of each node to dynamically set a 
threshold value for each physical channel for deadlock 
detection during the execution. Like [13] when an 
intermediate router detects a message to be engaged in 
deadlock, sends the message to the current PE and the 
software messaging layer re-injects the message into 
the network later. Unlike [13] which uses a static re-
injection time, AFBAR dynamically tunes this value 
according to local information and average utilization 
of the channels. 

AFBAR continuously monitors each physical 
channel of nodes to determine the traffic rate around 
nodes. Then, it updates the threshold value for each 
physical channel adaptively after a period of time (PT). 
Here this period is set to be eight times of message 
length. We define a channel utilization parameter for 
channel monitoring in a period of time as: 
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where n is the network dimension of the k-ary n-cube 
and Ui is the number of transmitted flits per physical 
channel.  

AFBAR dedicates another counter (instead of the 
counter used for deadlock detection) for each physical 
channel that is incremented by one when a flit is 
transmitted on the corresponding physical channel. 
Then, at the end of PT, using equations (1) and (2) 
channel utilization for each physical channel is 
calculated. It is clear that the channel with highest 
utilization rate sees the most traffic rate around and its 
threshold value must be increased. 

Generally, when a node has n bidirectional physical 
channels and the traffic is distributed uniformly in the 
network, then the traffic rate of each physical channel 
is a portion of the total traffic of the mentioned node. 
This ratio can be estimated as follows: 
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Thus, in a k-ary 2-cube topology where each node has 
4 bidirectional channels, we have: 25.00 =R    

Now, using the deviation from the uniform 
ratio (R0), AFBAR updates the next threshold value to 
tune it according to the traffic rate of each physical 
channel and when the deviation is negligible or zero, 
the threshold (like [13] ) is set to four times of message 
length. AFBAR uses the following equations to update 
the threshold value for each physical channel: 
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As mentioned before, another way that leads to more 

adaptivity is the use of dynamically tuned re-injection 
time. In [13] this factor has been assume to be constant 
(200 cycles), but we will dynamically change it using 
equations (6, 7, 8).  
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Where V is the number of virtual channels per physical 
channel. 

 
4. Experimental Results 
 

In this section, we will evaluate AFBAR under 
different traffic loads and compare its performance 
with software-based deadlock recovery (called 
STFAR) and FAR algorithms. The message length is 
32 flits and as aforementioned our network is 8-ary 3-
cube. Figure 2 shows the performance comparison of 
these algorithms under different traffic loads including: 
Local, Uniform, HotSpot and First Matrix Transpose 
(FMT). The best performance under all traffic patterns 
is achieved by AFBAR with 3 virtual channels. 
Although the performance of FAR is better than 
AFBAR with 1 virtual channel, but the main constraint 
of FAR is that it needs at least 3 virtual channels to be 
deadlock free. This requirement consumes more power 
in comparison with AFBAR using 1 virtual channel. 

As can be seen if Figure 2, the performance gap 
between STFAR and AFBAR with 3 virtual channels 
under uniform traffic pattern is small, hence we can 
use a static value for Ti like [21]. However, the uniform 
traffic load is not realistic, and different applications 
usually exert non-uniform loads. 

 
Table 1. Comparison of the number of 

detected deadlocks 
Num. of Detected Deadlock 

1Virtuall Channel  3Virtuall Channel 
Traffic 

Patterns Rate 

STFAR AFBAR STFAR AFBAR 
Uniform --- 161 82 0 0 

20% 226 161 0 0 
40% 144 89 0 0 

 
FMT 

60% 121 67 2 0 
20% 903 419 618 282 
40% 2407 1095 1596 984 

 
Local 

60% 5709 3547 3124 2002 
5% 208 29 5 0 
10% 669 324 414 35 

 
Hotspot 

15% 810 505 541 162 
Another important metric that is directly related to 

the performance is the number of detected deadlocks. 
Table 1 shows the number of detected deadlocks using 
AFBAR and STFAR routing algorithms. It is clear that 
the number of detected deadlocks with AFBAR is 
lower than STFAR which can lead to a better 
performance. 

There are two important points about the local 
traffic load:  

1) Under local traffic load (with a locality diameter 
of 1) lots of messages are sent to the neighbors, and 
such high level of locality in the traffic increases the 
probability of deadlock creation. It is clear from Table 
1 that the higher number of detected deadlocks is 



resulted for this traffic pattern which can lead to 
performance degradation. 

2) The short distance between the source and 
destination nodes under local traffic model results in a 
lower network latency and thus performance 
improvement. Figure 3 reveals this fact. 

 
Table 2. Performance Improvement 

Traffic Patterns Performance Improvement 
Number of 

Virtual 
Channels 

1 Virtual  
Channel  

3 Virtual 
Channels 

Uniform 20% 4% 
FMT 20.5% 10% 
Local 21% 4.8% 

Hot Spot 20.5% 97.7% 
Table 2 shows the performance improvement of the 

proposed routing algorithm (AFBAR) in comparison 
with STFAR under different traffic loads. The best 
performance improvement is achieved under hotspot 
traffic loads, due to the pipeline nature of wormhole 
switching and high blocking time under this type of 
traffic loads as mentioned before. 

 
5. Conclusions 
 

Deadlock management is essential for providing a 
reliable communication path between processing 
elements in interconnection networks of parallel 
computers. Among different switching methods for 
interconnection networks, wormhole switching is the 
most vulnerable to deadlock occurrence due to its 
pipeline nature. So some mechanisms should be used 
to resolve deadlocks.  

In this paper, we focused on the software-based 
deadlock recovery method (STFAR) which has been 
described in [13]. The deadlock detection mechanism 
used in [13] has a static nature to detect deadlocks at 
each node. Different traffic patterns generated by 
different applications require different treatment and 
thus using a static value in deadlock detection 
mechanism is not suitable. Our results showed the poor 
performance of STFAR under different traffic patterns 
and proposed an adaptive deadlock recovery method 
called AFBAR, which improved the performance 
under all traffic patterns. The performance 
improvement was ranged from 20-97% for local, FMT, 
HotSpot and Uniform traffic patterns. 
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Adaptive Deadlock Recovery routing algorithm (TFAR)  with 3 Vch
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Figure 3. Performance comparison of TFAR under different traffic models 


