
Network-on-SSD: A Scalable and High-Performance
Communication Design Paradigm for SSDs

Arash Tavakkol∗, Mohammad Arjomand∗ and Hamid Sarbazi-Azad∗†
∗HPCAN Lab, Computer Engineering Department, Sharif University of Technology, Tehran, Iran
†School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

{tavakkol,arjomand}@ce.sharif.edu, azad@{sharif.edu, ipm.ir}

Abstract—In recent years, flash memory solid state disks (SSDs) have shown a great potential to change storage infrastructure
because of its advantages of high speed and high throughput random access. This promising storage, however, greatly suffers
from performance loss because of frequent “erase-before-write” and “garbage collection” operations. Thus, novel circuit-level,
architectural, and algorithmic techniques are currently explored to address these limitations. In parallel with others, current
study investigates replacing shared buses in multi-channel architecture of SSDs with an interconnection network to achieve
scalable, high throughput, and reliable SSD storage systems. Roughly speaking, such a communication scheme provides
superior parallelism that allows us to compensate the main part of the performance loss related to the aforementioned limitations
through increasing data storage and retrieval processing throughput.

Index Terms—Flash memory, Solid state disk, Inter-package parallelism, Interconnection network.

F

1 INTRODUCTION

DUE to high-latency access to randomly-addressed data
and low-throughput concurrent access to multiple data,

widely-used rotating Hard Disk Drives (HDD) are known
to be performance- and bandwidth-limited mediums. Flash-
based Solid State Disks (SSD), on the other hand, are be-
coming the mainstream high-performance and energy-efficient
storage devices because of their fast random access, superior
throughput, as well as low power features. Leveraging
such a promising medium, researchers have made extensive
studies to exploit this technology in storage systems and
thus proposed solutions for performance optimization. Most
of these studies have focused on either improving SSD tech-
nology limitations (e.g. slow random write access), lowering
performance overhead of erase-before-write and garbage collec-
tion processes, or enabling access load balancing by means
of circuit-level, architectural, or algorithmic techniques.

As random writes to flash memory are slow and maxi-
mum parallelism within a package is limited to concurrent
access of including planes, one flash package can only
provide a limited bandwidth of 32-40MB/s [1]. Therefore,
SSDs usually utilize a multi-channel multi-way bus struc-
ture to conduct multiple data accesses in parallel while
providing maximum stripping likelihood. This enhances
aggregate bandwidth of a set of flash packages and im-
proves back-end reliability. Although increasing the number
of bus channels and hence the level of parallelism results
in increased performance and bandwidth, there has to be
tradeoffs between flash controller complexity, design cost,
and maximum achievable throughput. These tradeoffs are
even more challenging as the need for better performance
remains due to the stiff increase of processor parallelism in
many-core systems.

In this paper, we suggest replacing shared multi-channel
bus wiring with an interconnection network. Using a net-

Manuscript submitted: 07-Feb-2012. Manuscript accepted: 28-Feb-2012.
Final manuscript received: 04-Mar-2012.

work can result in higher performance, larger aggregate
bandwidth, more scalability, and better reliability. In fact,
interconnection network structures the global wires so that
their electrical properties are optimized and well-controlled.
These controlled electrical parameters, finally, result in re-
duced propagation latency and increased aggregate band-
width [3]. Moreover, sharing the communication resources
between many read/write requests makes more efficient use
of the resources: when one set of flash packages are idle,
others continue to make use of the network resources.

In a nutshell, networks are generally preferable to shared
buses because they have higher bandwidth and support
multiple concurrent communications. Note that some of
our motivations for inter-flash package network stem from
inter-chip networks in general purpose multi-processors
and intra-chip networks (Network-on-Chip) in chip multi-
processors.

2 THE SSD STRUCTURE

Figure 1 illustrates internal structure of an SSD that uses
some microchips of non-volatile memories to retain data.
As of 2012, most SSDs use NAND flash memories to provide
a high dense medium with random read and write access
capabilities. Each NAND flash package consists of multiple
dies and each die corresponds to multiple planes containing
the actual physical memory pages inside (e.g. 2, 4, or 8KB).
Though each die can perform read, write, or erase operation
independent of the others, all planes within a die can only
carry out same (or at most two) command(s) at a time.
To support parallelism inside a die, each plane includes
an embedded data register to hold data when a read or
write request is issued. Both read and write operations are
processed in page units. Nevertheless, flash memory pages
must be erased before any write which incurs a latency of
milliseconds. To hide this large stall time, the unit of an
erase operation in NAND flash memories is generally in
tens of consecutive pages, forming an erase block. To further

Flash Translation Layer

RC Processor
F

la
sh

 C
o

n
tr

o
ll

e
r

Cache Controller

SDRAM Cache

H
o

st
 I

n
te

rf
a

ce
 (

S
A

T
A

)

D
ie

 0

Flash Package

D
ie

 1

Plane 0

Plane 1

Plane 2

Plane 3

Plane 0

Plane 1

Plane 2

Plane 3

Serial

Connection

Page 0

. . .

Page 63

Block 4096

Page 0

. . .

Page 63

Block 0

...

Data Reg.

Cache Reg.

Fig. 1. A shared bus-based SSD internal structure.

reduce frequent erases, current flash memories use a simple
invalidation mechanism along with out-of-place update [1].

In order to emulate a block-device interface provided
in conventional HDDs, an SSD contains a special soft-
ware layer, namely Flash Translation Layer (FTL). FTL has
two main roles: the address mapping for translating logical
addresses to physical addresses and garbage collection for
reclaiming invalid pages. Moreover, FTL is responsible for
prolonging the lifetime of NAND memories through a wear-
leveling process. In more details, as the number of reliable
erase cycles onto each flash page is limited to about 105

times [6], this process tries to reduce the erase count and
make all blocks within an SSD to wear out evenly. To realize
FTL processes, an embedded RC processor augmented with
an SDRAM buffer (responsible for keeping block mapping
information and acting as a write buffer) is utilized.

Considering a single flash package, limited support of
parallel access to planes of a single die and high-latency
random write limit the maximum provided bandwidth to
32-40MB/s [1]. In addition, garbage collection and erase-before-
write operations require repetitive high-latency write and
erase operations which incur large latencies. To overcome
these shortcomings, a multi-channel bus structure is used to
connect flash packages to the embedded controller. In this
structure, a group of flash packages share a single serial bus
where a controller dynamically selects the target of each
command while a shared data path connects flash pack-
ages to the controller. This configuration increases capacity
without requiring more pins, but it does not increase the
bandwidth.

By enhancing parallelism through increased number of
parallel channels, the SSD performance has been improved
rapidly over the last few years. So that cutting-edge SSDs
now exhibit sustained read/write throughput of up to
250MB/s. However, the strong demand for storage devices
with better performance and bandwidth (1GB/s as pro-
jected in [4]) is increasingly developed.

3 NOSSD: NETWORK-ON-SSD
As mentioned before, the solutions for communication
structure between flash packages and the embedded con-
troller have generally been characterized by design of multi-
channel multi-way buses. Although channels in this archi-
tecture build on well-understood on-board routing concepts
with minimum complexity, enhancing parallelism in terms
of increased number of channels has some advantages
and some disadvantages. On one hand, high concurrency
would generally improve resource utilization and increase
throughput. On the other hand, addressing the channel
access arbitration problem in the controller is not trivial
and its latency and cost overhead may not be tolerable.
For instance, a fully-interconnected structure (one outgoing

channel per flash package) is optimal in terms of band-
width, latency and power usage. However, the controller
complexity in this structure linearly increases with the
number of flash packages. Thus, there always has to be
tradeoffs between the controller complexity, cost, and the
maximum throughput. On the contrary, attaching more flash
packages to a shared channel in a bus-based communication
structure largely degrades the overall SSD performance and
power efficiency. Indeed, this inefficiency is a direct effect
of increased access contention and capacitive load of the
attached units.

Lack of pipelining support is the other shortcoming of
shared channels. More accurately, when depth of the ser-
vice queue in the controller increases over the number
of physical channels, a single channel has to be shared
by more than one job which must be serialized [2]. In
short, any change in communication structure, supporting
pipeline data transmission, would substantially affect the
aforementioned performance and power loss.

For maximum flexibility and scalability, it is generally
accepted to move towards a shared, segmented network
communication structure. This notion translated into a data-
routing network consisting of communication links and
routing nodes, namely Network-on-SSD (NoSSD). In contrast
to the shared channel communication scheme, such a dis-
tributed medium scales well with package count and in-
ternal parallelism. Additional advantages include increased
bandwidth as well as improved throughput and reliability
by exploiting the provided parallelism in NoSSD.

3.1 NoSSD Design Concepts

Figure 2 illustrates topological aspects of a sample NoSSD
structured as a 4-by-4 grid that is connected to the flash
controller from one side (one outgoing channel per row
for the controller). The NoSSD, in a simplified perspective,
contains routing nodes to route data according to chosen
routing protocol and inter-router links connecting the nodes.
Each routing node has to be logically embedded within the
flash access circuitry, so that routing the inter-node links
onto SSD board shows more regularity.

Crossbar
& Routing

Logic
& Arbiter

& Input Buffer

F
la

sh
 C

o
n

tr
o

ll
e

r

Internal
Flash

Memory
Hierarchy

F
la

sh
 C

o
n

tr
o

l
L

o
g

ic

Fig. 2. Logical view of a NoSSD with 4-by-4 grid topology.

Details of the input-buffered router element alongside
the flash memory logic are shown in Figure 2. The router
connects to the local flash and adjacent units through bidi-
rectional channels. A local port is used to connect flash
logic to the network substrate while other fours provide
connections to the neighbors in grid topology. This rich
connectivity, however, is negatively limited by package pin
count. Alleviating this constraint, we assume that data
and control pins of a flash package are now multiplexed,
forming a wide access port (Section 3.2). This port is then
uniformly separated into parts each connected to an adja-
cent package.

Considering commodity design of buffer storage, routing
algorithm, and arbiters, router logic is simple with few
hundred gates per flash package. Among router elements,
the area of a router is dominated by buffer storage. If we as-
sume one-flit of buffering for each input channel (with 8 bit
width as shown in Figure 3), the total buffering requirement
becomes about 40 bits per router. Our estimation shows
the routing logic, arbiters, and buffer storage will occupy
an area less than 1% of a dense flash chip. In addition
to this area, we assume same inter-package wiring layout
as shared-channel SSDs use which makes the wiring effect
on design complexity to be substantially less than router
design.

3.2 Messaging Protocol in NoSSD
Using the concepts from interconnection networks, an
NoSSD can use wormhole packetization model [3] in which
control information and raw data are all integrated into
packets. In more details, each packet carries read/write
data, flash access commands, and network address infor-
mation. The packet format, shown in Figure 3, consists of
header flow control units (flits) followed by the payload
flits. Header carries destination address, request/response
information, and packet size while payload flits include raw
data. An additional 1-bit head identifies the type of a flit
that can be head or payload. A routing logic decides on
the output port for a message when its header reaches the
buffer head of an input port. When the route is determined,
the message waits until the next hop buffer is available and
preempts an output channel after arbitration. A crossbar
switch uses arbitration signals to provide synchronous con-
nections between any pair of input and output lines. Finally,
a flit physically transmits over a channel. When a message
reaches its destination, the local port is allocated and fed
into flash control logic flit by flit.

Destination Address
Request/Response

Info

4 bit 3 bit

Packet Size

...

1 bit

Type
Head

Type
Head

Packet Size
Type
Head

Data
Type

Payload

Data
Type

Payload

Command Type Bin. Code

3 bit Req./Res. Info

000

001

010

011

100

101

ReadReq

Read

Write

WriteAck

Erase

EraseAck

Fig. 3. Packet format for 4× 4 NoSSD messaging protocol.

To access a page for read operation, a read command is
encapsulated into a packet (i.e. ReadReq packet) and is issued
from the controller toward the target flash package. The
response would be returned back by the destination through
a Read packet which includes both data of the read page and
its meta-data (e.g. CRC and wear-leveling information). For
write operation, on the other hand, the controller initially
issues a packet (i.e. Write packet) containing both write
command and data with target package as destination. In
reply and after a successful write, flash package forms a
WriteAck packet with controller as destination and meta-
data as payload which will be then injected into the net-
work for routing. The same mechanism is applied for erase
operation through Erase and EraseAck packets.

3.3 Routing Mechanism in NoSSD
Similar to conventional SSDs, NoSSD is designed as a mod-
ular architecture but some components are added to obtain a

fully-pipelined inter-package communication structure with
specific characteristics (e.g. messaging protocol). Compared
to interconnection networks, NoSSD has some common
characteristics and specific features as follows.

NoSSD uses synchronous pipelined router architecture
in order to be compliant with available network and flash
memory standards. The data transmission between routers,
on the other hand, is asynchronous. To reduce data transfer
latency in the router and to increase the communication link
bandwidth accordingly, the router can be designed to sup-
port one routing logic in each incoming port. Thus, NoSSD
can forward maximum number of flits simultaneously from
different incoming-outgoing data switching pairs.

NoSSD guarantees lossless and in-order packet delivery
by means of utilizing a link-level flow control mechanism
between routers to avoid data overflow. Therefore, the size
of the FIFO buffers in the routers can be freely determined
to keep a tradeoff between the maximum tolerable load and
area consumption.

To keep network overhead at an acceptable level, routing
logic has to be minimal (one with hop count equal to Man-
hattan distance, e.g. turn model routings [3]). Regarding
minimal routing, different policies for packet injection can
be taken at the flash controller. To reduce network hop
count, a trivial choice is to deterministically inject a packet
to the network through the channel connected to the same
row that the target flash package is attached to (known
as nearest channel). Though such a routing configuration
simplifies controller design, it completely bypasses using
vertical inter-package links and reduces network utilization
as a result. More precisely, this scheme models NoSSD as a
pipelined shared bus structure.
To further increase the network efficiency in cost of in-
creased average hop count per packet, the controller may
decide on the outgoing channel considering load balancing.
A simple scheme is to allocate outgoing channels to packets
using a round robin scheme, if nearest channel cannot be
assigned to. Though simple, this scheme never guarantees
load balancing especially when destinations are randomly
chosen by FTL. An alternative is intelligent routing in which
the allocated channel is the one with both under-threshold
load and minimum hop count to the destination. Surely,
intelligent routing requires a load characterization scheme at
controller outgoing channels (e.g. counters) which, in turn,
increases the controller complexity.

3.4 SSD Design Opportunities using NoSSD

Replacing shared channels with NoSSD provides some ad-
vantages and new opportunities.

To facilitate data movements during garbage collection and
erase-before-write operations, most SSDs model page reclaim-
ing as a sequence of read, write, and erase requests handled
by the controller. Though simple and straightforward, this
mechanism increases load of the controller and channels.
Using NoSSD’s inter-package links (vertical or horizontal)
and making slight changes in the messaging protocol, we
can mitigate this inefficiency and improve network utiliza-
tion. As a solution, the controller can issue a Clean packet
(using reserved commands) toward the reclaiming source
package (RS). This packet must include addresses of the
valid pages and the reclaiming destination package (RD). In
response, RS augments the Clean packet with valid pages’

data, and then forwards it to RD. Finally, RD writes received
data pages to the specified free positions and issues a
CleanAck packet to notify the controller about reclaiming
task accomplishment.

The NoSSD design in Figure 2 uses a grid topology
with the controller positioned adjacent to one side. This
simple configuration imposes variations on response time
and throughput, especially when request size is small (such
as TPCC and TPCE workloads [5]). In fact, for a NoSSD
with p flash packages and c controller channels, there are(

p
c

)
choices to connect the controller to network nodes, each

with different latency and throughput profile. To minimize
the negative effects of the placement and sensitivity to
the request mapping strategy, an optimization approach
may be used. This way, FTL design complexity is reduced
with more concern on wear-leveling and less stress on load
balancing.

As mentioned before, the high latency of garbage collec-
tion operation can be tolerated using Clean and CleanAck
packets. However, once a Clean request is issued toward a
flash package, all subsequent read/write requests with the
same target have to wait till the end of reclaiming. This
increases the effective access latency. NoSSD, as a novel
communication paradigm, may address such problems by
prioritizing packets of certain classes over others within
routers’ arbitration units. In fact, the main goal is to speed-
up accesses to the flash storage, so that less stall time is seen
when crossing router input buffers. To this end, the router
micro-architecture could be reconfigured in routing and
arbitration logic to provide a certain class of prioritization
using the command type encapsulated in early flits of the
header.

4 EVALUATION RESULTS

We use Xmulator interconnection simulator [8] and Mi-
crosoft’s SSD model based on DiskSim 4.0 [7] for NoSSD
evaluation. The specification of the modeled flash memory
[6] along with the parameters of baseline multi-channel
SSD and NoSSD system is given in Table 1. Xmulator is
a discrete-event trace-driven simulator, so we can eval-
uate NoSSD efficiency in terms of response time, band-
width, and throughput metrics for several billions of trans-
actions. To provide Xmulator with traces of read/write
and erase/reclaiming requests within a SSD, we use ex-
tended DiskSim SSD model running real workloads. The
considered workloads include IOZone, Postmark, TPCE,
and TPCC applications.

TABLE 1
Parameters of the evaluation platform.

Page size = 4KB, Read latency = 25µs, Write
NAND Flash latency = 200µs, Block erase latency = 1.5ms,

(Samsung Elec.) Flash package size = 4GB (IOZone, Postmark),
8GB (TPCC, TPCE).

Baseline SSD
Bandwidth = 16 bits, Propagation latency = 25ns,
Size = 4 channels × 4 ways (IOZone,
Postmark), 4 channels × 8 ways (TPCC, TPCE).

NoSSD

Bandwidth = 8 bits, Inter router propagation
latency = 12.5ns, Input buffer size = 1 flit, Flit
size = 8 bits, Network size = 4× 4 grid (IOZone,
Postmark), 4× 8 grid (TPCC, TPCE).

The proposed NoSSD architecture is compared to shared-
channel structure in terms of average response time, through-
put, and bandwidth. Table 2 exhibits comparative analysis

for 4×4 (in IOZone and Postmark) and 4×8 (in TPCC
and TPCE) SSD structures for studied workloads. As can
be seen, NoSSD makes slight improvement in terms of
response time (about 2%) for TPCC and TPCE applications,
where the average request size is small (typically, 2 pages
of 4KB size [5]). However, it improves the response time
up to 10% in IOZone and Postmark file-system benchmarks
where the requests are considerably large (16 to 64 pages).
On the other hand, NoSSD greatly improves the maximum
achievable bandwidth (in MB) and throughput (in Kilo
IOps), especially when running transactional applications
such as TPCC. As depicted in Table 2, under TPCC and
TPCE, sustained bandwidth and throughput improvements
for NoSSD are up to 40%. Nevertheless, the improvement
is much smaller (about 10%) for IOZone and Postmark
applications.

TABLE 2
Comparative analysis of NoSSD and multi-channel SSD.

Workload
Response Time Throughput Bandwidth

(ms) (Kilo IOps) (MB)
Bus NoSSD Bus NoSSD Bus NoSSD

IOZone 2.496 2.156 0.780 0.834 229.8 242.9
Postmark 1.810 1.651 0.256 0.272 280.7 301.0

TPCC 0.138 0.136 44.8 64.5 355.8 511.5
TPCE 0.058 0.057 90.1 110.4 710.8 872.4

In summary, NoSSD can be a cause of bandwidth en-
hancement for OLTP applications where request size is
small and the parallelism provided in NoSSD increases
the maximum tolerable communication load. On the other
hand, even though latency improvement per single message
is not large in NoSSD, the aggregate latency improvement
of a bunch of messages forming a request of a filesystem
benchmarks is extremely high while it keeps SSD’s response
time low.

5 CONCLUSION

The performance of future large SSDs will be limited be-
cause of repetitive contentions on multi-channel shared
buses connecting flash packages to the controller. To address
this limitation, we have leveraged inter-package networks
for low-latency high-throughput access to data pages. We
proposed NoSSD, which efficiently provides a pipelined
multi-router access to flash storage. The results revealed
higher performance, larger bandwidth, more scalability, and
better reliability with respect to conventional SSD structures.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy, “Design tradeoffs for SSD performance,”
Proc. USENIX’08, pp. 57–70, 2008.

[2] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting
internal parallelism of flash memory based solid state drives in
high-speed data processing,” Proc. HPCA’11, pp. 266–277, 2011.

[3] W.J. Dally and B. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufman, 2004.

[4] R.F. Freitas and W.W. Wilcke, “Storage-class memory: The next
storage system technology,” IBM Journal of Research and De-
velopment, vol. 52, no. 4.5, pp. 439–447, 2008.

[5] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda,
“Characterization of storage workload traces from production
Windows Servers,” Proc. IISCW’08, pp. 119–128, 2008.

[6] Samsung Electronics, K9XXG08XXM series, 2007.
[7] The disksim simulation environment. Ver. 4.0. Retrieved in

September 2011 from: http://www.pdl.cmu.edu/DiskSim/
[8] Xmulator simulator. Ver. 6.0. http://www.xmulator.com/

