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Abstract—The internal architecture of a SSD provides channel-, chip-, die- and

plane-level parallelism levels, to concurrently perform multiple data accesses and

compensate for the performance gap between a single flash chip and host

interface. Although a good striping strategy can effectively exploit the first three

levels, parallel I/O accesses at plane-level can be performed only for operations

of the same types and page addresses. In this work, we propose the Twin Block

Management (TBM) policy that symmetrically conducts usage and recycling of

the flash block addresses on the planes of a die, thus enhancing the utilization of

plane-level parallelism for reads, writes and erases. Evaluation results show that

TBM improves IOPS and response time by up to 73 and 42 percent, respectively.

Index Terms—Flash memory, solid-state drive, plane-level parallelism,

garbage collection
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1 INTRODUCTION

IN NAND flash solid state drives (SSDs), in spite of the availability
of high-performance NAND flash communication interfaces (up to
800 MB [1]), the maximum achievable I/O performance of a single
flash chip (package) is restricted by the execution latency of flash
operations. In particular, the flash write (program) operation is
very slow and it even becomes slower by VLSI technology shrink-
ing. Consequently, SSDs use a set of flash chips which are orga-
nized in a massively parallel architecture (see Fig. 1) to achieve
high I/O performance through simultaneous execution of multiple
flash operations. In this architecture, a multi-channel multi-way
bus structure facilitates concurrent accesses to flash chips. Each
flash chip itself is composed of a set of dies that share the chip com-
munication interface and can independently execute flash opera-
tions. At the lowest level, there are multiple planes within a die that
can operate in parallel. However, plane-level parallelism has a
strict restriction that must be adhered to, i.e. same operations on
the same flash memory addresses are required for simultaneous
execution on the planes of a die.

Many recent studies were proposed to exploit plane-level paral-
lelism more effectively and alleviate its inherent limitations. They
generally use reordering and rescheduling of queued I/O opera-
tions to increase the chance of parallel execution at plane level [3],
[5], [8]. However, the efficiency of these methods is highly sensitive
to the behavior of the SSD flash management policy. Strictly speak-
ing, an out-of-place update policy is used in SSD to reduce the nega-
tive impacts of the NAND flash erase-before-write property. To
perform an update using this policy, the previous version of data
is marked invalid and the new data is written into a free location.
Therefore, a logical-to-physical address mapping scheme is used in
conjunction with a garbage collection (GC) mechanism to manage
data placement, consumption of the free memory locations, and
recycling of the invalid locations. These mechanisms greatly impact
the existence of queued I/O operations mapped onto different

planes of a die and, at the same time, accessing identical addresses
inside these planes. For instance, less queued write operations con-
form to the plane-level addressing constraint, if memory addresses
of the neighboring planes are asymmetrically assigned and invali-
datedmemory locations are recycled without any address consider-
ation. However, this critical influence of flash management
mechanisms was not considered in previous proposals and hence
their performance gain becomes negligible when random use of
page addresses becomes more frequent in the long-term. In this
work, we propose the Twin Block Management (TBM) policy for out-
of-place update that is aware of plane-level addressing constraint.
TBM defines new strategies for physical address assignment
and GC execution in order to symmetrically conduct usage and
recycling of the memory addresses on the planes of a die.

2 SSD INTERNALS

Fig. 1 shows the internal architecture of a NAND flash SSD com-
posed of four main components: 1) A host interface, that provides
communication with the host system and performs I/O request
queuing; 2) A controller, composed of a microprocessor and a
DRAM memory, that executes a special management firmware
called Flash Translation Layer (FTL); 3) A flash controller that is a hard-
ware driver to enable communicationwith flash chips; 4) Flash chips
that provide the raw SSD storage capacity. As we mentioned previ-
ously, flash chips are organized in a hierarchy of four parallelism lev-
els i.e. channel-, chip-, die- and plane-level. Multiple flash I/O
operations can be simultaneously executed through striping over
communication channels and pipelining between the set of flash
chips connected to each channel. Furthermore, each die of a flash
chip has its own command and address registers and hence execu-
tion of different operations can be interleaved between dies. At the
lowest level, planes of a die share the same control logic. Therefore,
same operations with same addresses must be available in the I/O
queue for parallel plane (multi-plane) command execution. Access
to the internal storage space of a plane is serial and read/write opera-
tions are performed at the unit of a page which typically includes 4
KB, 8 KB or a larger volume of data. Updating the content of a previ-
ously written flash page requires an erase operation. Due to its very
slow execution, a flash erase is performed at the unit of a block com-
posed of a set of 128, 256 ormore pages. According toONFI standard
specification [1], multi-plane commands must access the same page
offset within target blocks (referred as PAC). Besides, the flash con-
trol logic may also require the block addresses to be identical for
multi-plane command execution (referred as BAC). As of 2015, all
flash products require PACbut BAC is relaxed inmany products.

In order to emulate the interface of a conventional block device
(HDD), FTL performs following tasks: 1) Management of the
queued I/O requests and address mapping: host I/O requests are
segmented into several page-size transactions each with a specific
logical page address (LPA). Due to out-of-place update, LPAs must
be translated into physical page addresses (PPAs). The translation
procedure follows two different paths for write and read operations.
For a write operation, FTL allocates a free physical page. First, a
plane allocation function (PLAlloc) determines the address of target
channel, flash chip, die and plane according to a predefined alloca-
tion strategy. Then, a block allocation function (BLAlloc) assigns a
write-frontier within the selected plane. Inside write-frontier, pages
are allocated sequentially, from first to last index, and thus PPA is
determined and the (LPA, PPA) pair is stored in amapping table for
future reads. For read operations, translation is performed by
searching the mapping table for LPA entry. 2) GC: the out-of-place
update policy quickly consumes free flash pages. Consequently, a
GC procedure must be triggered by FTL to recycle the physical
pages having invalid data. This procedure selects a victim block
based on a predetermined policy, moves its valid pages into a new
location, and finally triggers the execution of erase operation.
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3 EXPERIMENTAL SETUP

In this work, we perform discrete-event trace driven simulation
using SSDSim [2] that provides a detailed implementation of the
architecture mentioned in Section 2. Furthermore, advanced man-
agement policies such as PAQ scheduling [5] and dynamic PLAlloc
strategies [2] are implemented to better exploit internal parallelism.
We use a diverse set of I/O traces from real enterprise and file-sys-
tem benchmark applications. Table 1 gives details of the evaluation
scenarios. The GC is performed using Randomized Greedy Algorithm
(RGA) [6] which efficiently balances the GC cost (number of page
movements) and number of comparisons required to find a candi-
date block.We also use two different dynamic strategies for PLAlloc
function, i.e. F and D [2], [10], to better exploit all parallelism levels
inside SSD. The F PLAlloc uses a fully dynamic resource allocation
strategy which determines channel, flash chip, die and plane based
on a round-robin busy-aware policy; i.e. if a resource to be allocated
is busy, then the next one will be allocated in a round-robin manner.
In the D PLAlloc, all resources are allocated using the same round-
robin busy-aware strategy except for die. A mathematical formula
is used to determine the die based on LPA value [10]. For BLAlloc,
we use a first-fit approach that finds the first free block in a round-
robinmanner and sets it as write-frontier. By default, PAC is consid-
ered for all simulation scenarios but BAC is not. If BAC is enabled,
corresponding curves are labeledwith +BAC.

4 LONG-TERM SSD BEHAVIOR

We conducted a set of simulation experiments to investigate the
long-term SSD behavior. To this end, each workload trace is repeat-
edly, and in different rounds, fed into the simulator and the replay
process is continued up to a point that the volume of arrived write
accesses (Volwrite) becomes 10� Cap (total SSD capacity). Fig. 2
illustrates the results for proj-0 workload as a representative.
In this figure, the variations of different criteria, including average
response time, GC execution rate, and the percentage of read/write
operations that use plane-level parallelism, are shown during
the simulation process.

In the very beginning rounds, where Volwrite < 1� Cap, the
average response time of D(+BAC) strategy is better than F(+BAC)
due to excellent exploitation of plane-level parallelism for the exe-
cution of write operations. As the volume of write accesses
increases in next simulation rounds (Volwrite � 1� Cap), the aver-
age response time of both strategies rises but with a higher rate for
D(+BAC). In other words, when the volume of write accesses
exceeds the GC execution threshold (� 1� Cap), then the GC is

triggered and normal I/O operations of the SSD are blocked by
internal tasks that are required for valid page movements and
block erasure. More importantly, percentage of multi-plane opera-
tions substantially decreases due to GC side-effects on address
translation and, in the long-term, D(+BAC) strategy loses its supe-
riority over F(+BAC) as its ratio of multi-plane writes is reduced by
a factor of 90 percent. Besides, relaxing BAC in F and D strategies
has no significant impact on overall SSD performance as we only
see a less than 2 percent improvement in the long-term response
time of D with respect to D+BAC.

4.1 GC Side-Effect on Multi-Plane Writes

In a pristine SSD, where a great portion of flash blocks are empty,
free pages of the same addresses can be easily allocated for multi-
plane execution of two consecutive write operations. In particular,
if round-robin strategy is used for plane allocation inside a die (as
used in F and D), flash writes are evenly distributed among planes
of a die and hence page address assignment can be symmetrically
progressed inside blocks as depicted in Fig. 3a. Furthermore, in a
pristine SSD with BAC, the simple first-fit BLAlloc can select write-
frontier blocks with same addresses to fully satisfy the conditions
of multi-plane write. Nevertheless, when SSD free pages are
exhausted and the GC is performed, the set of available free page
addresses may become unequal in the planes of a die due to two
GC side-effects: I) Blocks of different addresses may be selected
for reclamation based on the GC block selection policy. Fig. 3b
illustrates an example of this side-effect that causes BAC violation.
II) GC candidate blocks may contain different number of valid
pages and hence different number of free pages are consumed in
the write frontier blocks during GC execution. An example of this
side-effect is depicted in Fig. 3c.

4.2 GC Side-Effect on Multi-Plane Reads

As shown in Fig. 2, the ratio of read operations that exploit plane-
level parallelism decreases in the long-term. In fact, the data of
physical pages that participate in a multi-plane read operation (PA
and PA0 in Fig. 4a) may be moved to different addresses during
GC execution. Fig. 4b shows an example where the block at BA is
selected for reclamation and its valid pages, including the content
of PA, are moved to new addresses while valid pages of BA0,
including the content of PA0, remain in their previous locations
(BAC violation). Another example is shown in Fig. 4c where the
content of PA and PA0 addresses are moved to two different page
addresses during GC execution (PAC violation). In a nutshell, if

Fig. 1. The internal architecture of a NAND flash SSD.

TABLE 1
Evaluation Scenarios

Fig. 2. The long-term SSD behavior when replaying proj-0.

Fig. 3. GC side-effects on write address assignment.
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GC block selection and page movements are performed without
address considerations, then the utilization of plane-level parallel-
ism is considerably reduced. Note that separate execution of GC
for each plane of a die decreases the chance of performing multi-
plane erase operations which can reduce the negative impacts of
slow erase operations.

5 TWIN BLOCK MANAGEMENT POLICY

Here, we propose TBM policy to relieve the side-effects of out-of-
place-update on the utilization of multi-plane read/write opera-
tions. Our policy relieves problems with both BAC and PAC and
hence can be used as a general approach to overcome the address-
ing challenges of plane-level parallelism in the long-term. TBM
also enhances the efficiency of GC execution through full utiliza-
tion of plane-level parallelism for flash erase operations. To satisfy
BAC, TBM modifies the FTL management mechanisms so that the
same address blocks within neighboring planes, i.e. twin blocks, are
simultaneously set as write-frontiers and recycled together during
GC execution. Instead of individual block status data, TBM uses a
specific data structure, called TBM Table (TBT), to keep track of the
twin blocks usage. Fig. 5 illustrates the TBT structure which
includes a set of entries and an integer variable, namely Current
Page Index (CPI), that is used for write address assignment. Each
entry of TBT, at an arbitrary index i, is a TBM Unit (TBU) and pro-
vides the usage summary information of the twin blocks at index i,
including Free Pages Count (FPC), Invalid Pages Count (IPC) and
Erase Count (EC). Previous studies showed how to efficiently main-
tain such a data structure in flash memory and just temporarily
keep the currently used entries (TBUs) in DRAM [11].

5.1 TBM Modifications for Page Allocation

A prerequisite for symmetric address allocation on the planes of a
die is the even distribution of write accesses among them. There-
fore, TBM requires a PLAlloc strategy that provides round-robin
plane allocation inside a die. Algorithm 1 shows the general
scheme of such a TBM_PLAlloc function. As depicted, arbitrary
allocation strategies can be used for channel, flash chip and die
assignment but, within a die, plane must be allocated in a round-
robin manner. The F and D strategies, used in the previous
sections, satisfy such a requirement.

Algorithm 1 also explains TBM_BLAlloc function which uses
CPI for symmetric address allocation in twin blocks. In the first
step, TBM_PLAlloc selects a Write-Frontier TBU (WFU) whose twin
blocks are used as the write-frontiers of their corresponding planes.
CPI is set to 1 for a newly selected WFU (Line 3) since all its
twin blocks are free. Address allocation starts from Page 1 of
the write-frontier of Plane 1 and, due to round-robin plane
allocation, continues on Page 1 of the twin write-frontiers at
neighboring planes. When Page 1 of the last plane is written,
CPI is incremented (Line 8) and thus address allocation pro-
ceeds for the next CPI values till the last page index of the twin
write-frontiers. In this way, address allocation is symmetrically
progressed on twin blocks to satisfy PAC and the probability of
mapping consecutive write operations to the same addresses
inside neighboring planes increases.

Algorithm 1. Address Translation Functions for TBM

1: function TBM_PLAlloc(LPA)
2: Channel ALLOCATECHANNEL(LPA) " arbitrary strategy
3: Chip ALLOCATECHIP(LPA, Channel)

" arbitrary strategy
4: Die ALLOCATEDIE(LPA, Channel, Chip)

" arbitrary strategy
5: Plane current plane of Die
6: UPDATE current plane of Die in a round-robin manner
7: return (Channel, Chip, Die, Plane)

1: function TBM_BLAlloc(Channel, Chip, Die, Plane)
2: whileWFU of Die has no free pages (FPC ¼ 0) do
3: UPDATEWFU in a round-robin manner, CPI 1
4: Block the block of Plane determined by WFU
5: Page the page of Block determined by CPI
6: DECREMENT FPC of WFU by one
7: if Plane is the last plane of Die then " all planes are

written at CPI
8: INCREMENT CPI of WFU by one
9: return (Block, Page)

5.2 TBM Modifications for GC

As mentioned in Section 4, recycling of the blocks with same
addresses in the planes of a die plays a key role to better exploit
plane-level parallelism. Besides, the correct operation of the pro-
posed TBM_BLAlloc function depends on the outcome of GC execu-
tion since all twin blocks of WFU must be free and available for
write. Therefore, TBM_GC is designed to simultaneously perform
GC for all planes of a die. As shown inAlgorithm 2, TBM_GC selects
a candidate TBU by searching the TBT entries based on an arbitrary
selection policy (RGAor etc.). Next, the destination is set for all valid
pages of the candidate TBU. If there are valid pages with same
indexes inside twin blocks, then same page addresses are assigned
within blocks of the WFU using TBM round-robin allocation strat-
egy. Otherwise, the destination is set by calling TBM_BLAlloc. This
helps to relieve the read PAC violation shown in Fig. 4c. Having
destination assignment finished, valid pages are moved and then
the erase operation is performed in parallel for all planes of the tar-
get die and twin blocks are reclaimed. To better exploit parallelism,
GC can also be performed for other dies of the chip if they are
near GC execution threshold (e.g. +5 percent free pages).

6 EVALUATION RESULTS

We use the simulation methodology and SSD model described in
Section 3 to evaluate the effectiveness of TBM. Fig. 6 shows the
long-term SSD behavior when TBM is used and proj-0 workload
is replayed. Comparing the results of Figs. 2 and 6 reveals that
TBM greatly reduces the GC execution rate since more flash blocks
are recycled for each GC invocation. Therefore, SSD resources are
less engaged in erase operations and waiting time of the normal
I/O operations decreases. On the other hand, TBM keeps the ratio
of multi-plane read and write operations nearly constant during
simulation. Consequently, the negative impacts of GC are miti-
gated and the long-term SSD response-time is improved with
respect to the base FTL. Fig. 7 shows the summary of long-term
simulation results for different traces. In addition to D and F

Fig. 4. GC side-effects on multi-plane reads.

Fig. 5. The data structure used in a TBM realization.
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allocation strategies, simulations are also performed for a special
variation of F, namely F2, which prioritizes plane-level parallelism
over die-level. In fact, if there are two consecutive write operations
in I/O queue, F prefers die-level parallelism for their execution but
F2 favors plane-level. Since the base results of F2 are almost identi-
cal to F, they are omitted in the charts. The charts just include the
scenarios without BAC, since considering/ignoring the BAC leads
to negligible variation in the achieved results (0 to 2 percent). As
can be seen, TBM always improves the performance of F strategy
(F+TBM with respect to F) but the maximum IOPS/response time
improvement rate is limited to 5 percent/17 percent as F+TBM
just benefits from lower GC blocking time. However, D+TBM
and F2+TBM greatly exploit plane-level parallelism and can
improve IOPS/response time by up to 68 percent/42 percent and
73 percent/40 percent, respectively. Nonetheless, the D+TBM may
negatively impact performance for some workloads, such as fin1

and prn1. Considering the average GC cost results, it can be seen
that D+TBM requires higher number of GC page movements due to
larger variations in the distribution of valid/invalid pages among
twin blocks. This negative impact is compensated in prn-0 by
better usage of plane-level parallelism and less GC triggers. Also,
I/O request arrival pattern decreases the probability of GC interfer-
ence. However, for prn-1 and fin-1, extra GC page movements
interfere with normal I/O operations and destroy the positive
impacts of TBM; hence a performance drop of 1 to 10 percent is seen.

Algorithm 2. Garbage Collection for TBM

1: procedure TBM_GC(Channel, Chip, Die)
2: CandidateTBU SELECTCANDIDATEBLOCK(TBT)
3: for all P 2 valid pages of the CandidateTBU do
4: if exist P0 2 valid page with PageIndexP ¼ PageIndexP 0

then
5: ASSIGN Dest[P] and Dest[P0] in WFU of Die with

identical indexes using TBM round-robin page allo-
cation strategy

6: else
7: Dest[P] TBM_BLALLOC(Channel,Chip,Die,current

plane of Die)
8: UPDATE current plane of Die in a round-robin

manner
9: for all P 2 valid pages of the CandidateTBU do
10: MOVE P to Dest[P]
11: PARALLEL ERASE all blocks of the CandidateTBU
12: UPDATE CandidateTBU: reset FPC, IPC 0, EC EC þ 1

7 RELATED WORK

In order to effectively exploit SSD internal parallelism, the address
mapping strategy should fairly stripe flash operations over
channel-, chip-, die- and plane-level resources. In the next step,
scheduler must resolve resource contention among mapped flash
operations while searching for operations that can be grouped for
parallel execution at die- and plane-level. Prior studies proposed
dynamic address mapping strategies to enhance address striping
of write operations over idle flash resources and hence achieved
significant performance improvements [2], [8], [9], [10]. Other

studies proposed scheduling schemes for out-of-order execution or
rescheduling of queued operations in order to resolve their
resource contentions and better exploit intra-chip parallelism [3],
[5], [8]. However, all these proposals fail to consider the long-term
SSD performance when GC side-effects negatively reduce the prob-
ability of multi-plane operations. TBM, in contrast, better exploits
plane-level parallelism in the long-term for LPA to PPA mapping.
Consequently, it helps to boost the performance of any scheduling
scheme that is aware of plane-level parallelism, including Sprin-
kler [3], in such a way that higher number of mapped operations
conform to multi-plane addressing constraint. Recently, Jung et al.
proposed HIOS, a scheduler that focuses on a different aspect of
GC execution [4]. HIOS redistributes GC execution overheads
across non-critical I/O requests in order to reduce channel resource
contention and satisfy QoS requirements. Therefore, HIOS and
TBM target orthogonal problems.

8 CONCLUSION

We proposed a new policy to overcome addressing constraints of
plane-level parallelism to effectively exploit it in the long-term to
speedup write, read and erase operations. Evaluation results show
that the proposed scheme could improve IOPS and response time
by a factor of up to 73 and 42 percent, respectively.
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