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ABSTRACT 
In this paper, we present a reconfigurable architecture for 
network-on-chips (NoC) on which arbitrary application-specific 
topologies can be implemented. The proposed NoC can 
dynamically tailor its topology to the traffic pattern of different 
applications at run time. The run time topology construction is 
realized through a light-weight control network. It involves 
monitoring the network traffic in order to detect heavy 
communication flows and configuring the topology in order to 
reduce the hop count between their source and destination nodes, 
while the NoC connectivity is preserved. In this paper, we first 
introduce the proposed reconfigurable topology and then address 
the problem of run-time topology reconfiguration. Experimental 
results show that this architecture effectively improves the 
performance of NoCs and reduces the power consumption over 
the existing conventional NoCs.   

Categories and Subject Descriptors 
B.4.3 [INPUT/OUTPUT AND DATA COMMUNICATIONS]: 
Interconnections (Subsystems)—topology 

General Terms 
Design 

Keywords 
NoC, performance, power, reconfigurable, topology. 

1. INTRODUCTION 
Application-specific optimization is one of the most effective 
approaches to improve power/performance metrics of Network-
on-Chips (NoC) [1]. Customizing the network topology for a 
given application is an important application-specific NoC 
optimization method which dramatically affects the power 
consumption and average latency of NoCs, when running that 
application. Like other application-specific optimization methods, 
existing methods generate a customized topology and mapping for 
a single target application, provided that the application and its 
traffic characteristics are known at the design time [2]. However, 
several different applications may be integrated onto a single 
complex multicore System-on-Chips (SoC). In addition, NoC-
based Chip Multiprocessors (CMPs) are generally applied to run 
different applications which may not be known at design time. 
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Generally, an NoC that is designed to run exactly one 
application does not necessarily meet the design constraints of the 
other applications. Furthermore, the traffic pattern of a single 
application may vary significantly over time. 

In this paper, we address the need for dynamic topology 
adaption by introducing a reconfigurable NoC architecture which 
enables the network topology to dynamically match the 
communication pattern of the currently running application.  

The reconfiguration of the proposed architecture is achieved 
by inserting several simple switches in the network which allows 
dynamically changing the inter-node connections and 
implementing the topology in which the number of intermediate 
routers between the source and destination nodes of high volume 
communication flows is reduced by bypassing as many 
intermediate routers as possible. This can lead to considerable 
performance improvement since the power/latency of the router’s 
pipeline stages has a significant contribution to the total NoC 
power/latency.  

Our early evaluation results using a static design-time 
topology generation method showed the effectiveness of this 
architecture in reducing NoC power consumption [3]. In this 
work, we show the ability of our reconfigurable NoC architecture 
in handling dynamic traffic patterns by developing a run-time 
topology reconfiguration mechanism. To guarantee the 
connectivity of the network when the topology is reconfigured, a 
set of links with fixed connections are used along with the 
reconfigurable links. This set of links, called the fixed sub-
network (or Fnet), is used to provide permanent connections 
among nodes based on a given topology, e.g. mesh, here. The 
second set, called the reconfigurable sub-network (or Rnet), on 
the other hand, is devoted to establish application-specific 
connections between the nodes with high-volume communication 
demands. The Rnet is still a packet-switched network, but its 
topology is customized for the traffic flows travel over it.  

To keep the cost of the proposed NoC equal to a traditional 
packet-switched one, the NoC links and resources are divided 
between the two sub-networks using Spatial-Division 
Multiplexing (SDM). Unlike Time-Division Multiplexing (TDM) 
where at each time slot, all the wires of a link are dedicated to 
transmission of data from a single source, the SDM technique 
allocates a sub-set of the link wires to a given circuit for the 
whole connection lifetime.  

Improving the power and performance metrics of packet-
switched NoCs by integrating a second switching mechanism has 
been addressed in several previous works [4][5][6]. For example, 
the long-range links in [6] are constructed to provide shortcut path 
between the source and destination nodes of high-volume 
communication flows at design-time. The reconfigurability is, 
however, the key advantage of our work over long-range links as 
it allows the shortcut paths to be constructed dynamically based 



on the traffic pattern at run-time. Besides, being established over 
conventional NoCs, our architecture still benefits from the 
predictability and reusability of regular NoC architectures. 

In this paper, we first introduce the proposed NoC 
architecture and then propose a run-time topology reconfiguration 
algorithm and show its effectiveness in improving the NoC power 
and performance metrics. 

2. THE PROPOSED NOC  
2.1 Reconfiguration Mechanism 
The system under consideration is composed of m×n nodes 
arranged as a 2D mesh network. In the proposed NoC 
architecture, however, the routers are not connected directly to 
each other, but connected through simple switch boxes, called 
configuration switches (see Figure 1). Each square in Figure 1 
represents a network node which is composed of a processing 
element and a router, whereas each circle represents a 
configuration switch. Figure 1.a shows the internal structure of a 
configuration switch. It consists of some simple transistor 
switches that can establish connections between incoming and 
outgoing links. In this figure, for the sake of simplicity, only a 
single wire connection is depicted between each two ports of a 
configuration switch. However, there are two connections 
between each two ports of a configuration switch in order to route 
the incoming and outgoing sub-links of bidirectional links 
independently. Actually, the internal connections are 
implemented by a multiplexer at each output port of the switch. 
We refer interested readers to [3] and [7] for more details of this 
architecture, including its architectural features, area overhead, 
and reconfiguration latency. 

 
Figure 1.  The reconfigurable NoC architecture 

2.2 Network Partitioning  
As mentioned in Section 1, in this work, we propose to 

partition the NoC into two sub-networks using the SDM scheme. 
This proposal aims to benefit from the decreased average packet 
path length (hop count) of the reconfigurable sub-network, while 
preserve the network connectivity via the fixed sub-network.  

Applying SDM in a packet-switched network allows having 
several links in parallel in the same direction and therefore 
increasing the number of distinct paths in that direction. This 
increase in the path diversity reduces the head of line (HOL) 
blocking and can improve the average latency and throughput of 
the network. On the other hand, splitting the links into two parts 
may increase the average packet latency as the number of flits of 
a packet is increased. 

An in-depth analysis of the effect of SDM on the NoC 
latency and throughput in [8] shows that splitting the links into 
two sub-links increases the throughput by 50-60% with a 
negligible negative effect on the average message latency. Thus, 
SDM is a suitable bandwidth multiplexing scheme for our NoC, 
since in addition to throughput, by selectively employing the sub-
networks, we can also improve the power and latency of the NoC. 

Figure 2 illustrates the partitioning scheme, where network 
resources (links, buffers, crossbar, and configuration switches) in 
an N-bit wide NoC are divided into 2 parallel N/2-bit sub-
networks. The first set of sub-links (the upper part) form Fnet and 
the other part is devoted to Rnet. The total buffering space in a 
router remains the same as that in the original conventional NoC. 
The crossbar switch structure is the same as in a conventional 
packet-switched router, but the switch allocator (arbiter) is 
divided into two separate Fnet and Rnet allocators.  

Although the proposed NoC is not restricted to a specific 
switching scheme and routing algorithm, the NoC routers, in this 
study, adopt a conventional wormhole switching mechanism. 
However, the route computation and switch allocation schemes 
are adapted to the new features of the proposed architecture.  

In this architecture, packets, on arriving at an input port, are 
buffered in R_Buff (in Figure 2) if they are arrived from Rnet, 
and in F_Buff, if they are arrived from Fnet. To route a packet, 
the router first checks if there exists a long link in the Rnet 
originating from the current node destined to some node along the 
route towards the packet’s destination. As a packet is only 
allowed to use the shortest paths, routing logic checks the (at most 
two) output ports along the shortest paths toward the destination 
for Rnet links. Between the two Rnet ports, the one which allows 
more intermediate nodes to be skipped over is selected. In 
parallel, the default routing algorithm (x-y routing) is used to 
select the proper output port in Fnet. The header then requests for 
the selected Fnet and Rnet (both, if any) partitions of the 
corresponding output ports in the switch allocation stage of the 
router pipeline. On successful allocation of the requested Rnet 
port, the flit withdraws its Fnet request. If the flit wins more than 
one ports at the same cycle, it selects the Rnet port. In the current 
implementation, deadlock freedom on Rnet is guaranteed using 
the well-known escape channel method [9] which involves using 
at least two virtual channels per port. 
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Figure 2. The proposed router architecture 

Although this section assumes that the link-width is equally 
divided between the Fnet and Rnet sub-networks, this architecture 
is capable to assign different number of wires to each sub-
network. This can be achieved by using a bit-vector register, 
called the partition vector (PV), which determines the bit-width 
assigned to each sub-network. Setting a bit in PV to 1 indicates 
that the corresponding bit in the NoC link is assigned to the Fnet, 
otherwise it belongs to the Rnet. PV is used in the network 
interface of each node to determine the flit width of packets. 
Setting the flit width to an appropriate value can be easily carried 
out by shift registers. Clearly, the flit width should be long 
enough to guarantee that the routing and other required 
information can be embedded into a single flit (the header flit). 
Moreover, PV is used at the crossbar to direct the flits to 



appropriate output port wires (Figure 2), according to the decision 
made by each arbiter (Fnet allocator and Rnet allocator).  
Reconfigurability is the key point of the proposed partitioning 
method, in that the link-width of Fnet and Rnet can be changed at 
run-time by simply changing the bits of the PV register. The 
network can even be converted to a fully customized or fully 
fixed packet-switched network, based on the current traffic 
pattern. 

3. TOPOLOGY RECONFIGURATION 
ALGORITHM  
This section proposes a scheme for topology reconfiguration 
which dynamically changes the Rnet connections in response to a 
change in the current on-chip communication pattern. Here, it is 
assumed that each task is non-migratory and already mapped onto 
some node. The whole procedure relies on monitoring the traffic 
generated by each node in order to detect high-volume 
communication flows. A mechanism then selects the best Rnet 
path for the detected flows. The path must include only the 
routers and configuration switches along the shortest paths 
between the source and destination nodes of the requesting flow.  
Finding a new topology using this procedure may take a few 
clock cycles. However, this procedure is done in parallel with 
normal network operation and packets do not wait for the new 
Rnet configuration to be completed; they continue traveling on 
the current Fnet and Rnet configuration. Therefore, this setup 
latency does not degrade the network performance.  
Traffic Monitoring. Traffic monitoring is simply done at each 
node by storing the number and the destination node addresses of 
the packets the node sends. The weight of each flow is an m-bit 
value which is set to the m most-significant bits of the register 
holding the traffic volume, multiplied by the traffic flow length 
(defined as the Manhattan distance between the source and 
destination nodes of the flow); this is because as the length of a 
flow increases, the contribution of the flow in the entire on-chip 
traffic increases. 
Once the weights are periodically updated at some specific times, 
each node sends the weight of its flows weighting higher than a 
threshold to a global arbiter. The threshold of each node is 
defined as the average communication volume of the flows 
originating from it. The arbiter then sorts the communication 
flows in order of their communication volume and tries to build a 
path with minimum cost for each flow in the order. We calculate 
the cost of a path as the cumulative cost of the routers and 
configuration switches it includes. According to the power and 
latency analysis presented in [3], we assign a cost of 1 to a 
configuration-switch and a cost of 5 to a router. 
Initially, in the topology selection algorithm, the internal 
connections of all configuration switches are un-configured. 
Finding a route may involve configuring the switches which are 
not yet configured in order to bypass some intermediate routers 
and make a shorter connection between two given nodes. The 
algorithm can configure the un-configured internal connections of 
the configuration switches, but not the connections that have 
already been configured at previous iterations of the algorithm. 
 Path Selection Algorithm. We employ a simple and tiny set-up 
network (or control network) along with the main data network to 
configure the paths in the Rnet. The size of the setup network is 
the same as the size of the main data network. Each node in the 
setup network corresponds to a node (router or configuration 
switch) in the data network with the same address. Having a small 

bit-width and a simple internal structure, the area of the setup 
network is negligible, compared to the main data-network. It also 
consumes negligible power due to its infrequent activity and small 
bit-width. To calculate the minimum cost for an Rnet path for a 
flow, the cost of the path is propagated from the source node 
toward the destination node, along all of the shortest paths. In this 
way, initially, the source node sends its cost as the initial partial 
path cost to its neighboring nodes along the shortest path towards 
the destination. Each node (router or configuration switch) 
receives the partial path cost (the cost of the path from the source 
node to the current node), adds it to its cost, and propagates the 
result to the next nodes towards the destination, until the final cost 
is received at the destination node. If the current node is a router, 
it sends the cost to its neighboring configuration switches along 
the shortest paths. Similarly, configuration switches send the 
updated cost to appropriate neighboring routers or configuration 
switches. However, the current configuration switch may be 
already configured in previous steps of the algorithm, in such a 
way that the port through which the cost reaches the switch is 
connected to some output port. In this case, the cost is sent along 
the direction determined by the current switch configuration, 
provided that the direction is along the shortest path towards the 
destination. Starting from the source node, the cost values are 
forwarded to the destination node one hop per cycle. The 
intermediate nodes may receive two costs from the neighboring 
nodes at the same cycle. Each node selects the minimum cost for 
propagation (and ignores the other one.  
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Figure 3. The average packet latency (cycles for 8-flit packets) 
for the proposed and conventional NoCs, under 1-hot flow (a), 
2-hot flow (b), and 3-hot flow in a 6×6 NoC  
A node also ignores a received cost, if the link between the 
current node and the node from which the cost is received does 
not have enough bandwidth to accept the requesting 
communication flow.  
Each node keeps the track of the path with the minimum cost by 
storing the direction from which the minimum cost is received. 
Once the final cost reaches the destination node, indicating that an 
Rnet path with the minimum possible cost is found for the flow, 
the destination node sends back an acknowledgement signal 
toward the source node along this path. The connection is then 
established in the NoC by configuring all according configuration 
switches within the path. Afterwards, the algorithm continues 
with the next flow, until all requesting flows are serviced. Since 
the path exploration is carried out within the shortest path area, 
the worst case happens when the selected path (if any) includes 
the same number of routers as a shortest path in the Fnet. 

4. TOPOLOGY RECONFIGURATION  
4.1 Synthetic Traffic  
As shown in [10], most of the realistic CMP workloads exhibit a 
high degree of temporal and spatial communication locality, so 



we now use a synthetic traffic with similar characteristics to 
commercial and scientific CMP workloads. To this goal, we use 
the three synthetic traffic patterns presented in [10], to evaluate 
the effects of the presented architecture on the CMP workloads. In 
the first pattern, the 1-hot flow traffic pattern, each node sends 
80% of the generated packets to exactly one destination node and 
the remaining 20% packets to other randomly chosen nodes. In 
the other traffic pattern, the 3-hot flow traffic pattern, each node 
sends 20% of the generated packets equally randomly to the 
network nodes and the remaining 80% are sent to three specific 
nodes. The hot destination nodes of each source node are selected 
randomly from other network nodes. 
Each simulation runs for 1,000,000 cycles. The randomly-selected 
hot destination nodes of each source node are changed every 
200,000 cycles and the reconfiguration procedure is initiated 
every 100,000 cycles.  
We have evaluated the proposed NoC architecture using 
Xmulator, a fully parameterized simulator for interconnection 
networks [11]. The Orion power library [12] integrated to 
Xmulator calculates the power consumption of the NoCs. 
The results are compared against a conventional mesh NoC with 
speculative 4-stage pipelined routers employing an adaptive 
routing algorithm. For all NoCs, simulations are performed for a 
128-bit wide system, speculative 4-stage pipelined routers, 2 
virtual channels per port, 8-flit deep buffers, and 8-flit packets. 
The power results reported by Orion are based on an NoC 
implemented in 65 nm technology and the working frequency of 
the NoC is set to 500 MHz. The link-width of the Rnet and Fnet 
are set to 96 and 32 bits, respectively.  
Performance Results. Figure 3 shows the average packet latency 
of the proposed NoC and the conventional NoC as a function of 
the injection rate (packet per node per cycle) under hot-flow 
synthetic traffics in a 6×6 mesh NoC. As shown in the figure, the 
proposed architecture improves the latency of the NoC. The 
reduction in latency over the conventional NoC (before the 
saturation point of the conventional NoC) is 28% for the 1-hot 
flow, and 13% for the 3-hot flow traffic. Moreover, our NoC 
significantly push the NoC throughput by around 25% over the 
conventional NoC. As we move from the 1-hot flow traffic to the 
3-hot flow, increasing the number of favored destinations of each 
source node results in decreasing the advantages of the proposed 
approach. This is because the number of high-volume connections 
is increased while the network resources that can be used by long 
links are fixed. Thus, the Rnet cannot provide long connection for 
some traffic flows and larger portion of the traffic is directed 
through the packet-switched network.  
Energy Results. We measure the energy consumption of the NoC 
in terms of energy per flit (including the setup network energy) at 
the traffic generation rate just before the saturation point of the 
conventional NoC. Our proposed NoC outperforms the 
conventional NoC, with 22% energy reduction for the 1-hot flow 
and 9% reduction for the 3-hot flow traffic loads. This is because 
the proposed NoC forwards a significant portion of the on-chip 
traffic over short-cuts, thereby the power-hungry buffering 
operations are removed. We omit the power diagrams due to the 
limited space. 

4.2 SPLASH Traffic 
Now, we evaluate the effectiveness of the proposed NoC under 
the traffic traces generated from SPLASH-2 benchmark suit [13].  
The parameters of the NoCs are set like in the previous section. 
We set the period of the topology reconfiguration procedure for 
each benchmark separately in such a way that the procedure is 
invoked 5 times during the execution of the benchmark. Figure 4 

compares the latency and energy obtained by the proposed and 
conventional NoCs across the SPLASH-2 traces, on a 7×7 NoC. 
The results are normalized to the results given by our NoC. On 
average, the proposed architecture outperforms the conventional 
NoC by 19% and 12%, when considering the packet latency and 
energy, respectively. 

Figure 4. The reduction in average packet latency (a) and energy 
consumption (b) of the proposed NoC over the conventional NoC 

5. CONCLUSIONS 
We proposed a dynamically reconfigurable architecture for NoCs 
on which arbitrary application-specific topologies can be 
implemented. The reconfigurability of the proposed NoC 
architecture allows it to dynamically tailor its topology to the 
traffic pattern of different applications at run time. The network 
connectivity in our NoC is guaranteed by partitioning the entire 
links into two sets and keeping the connection of the links inside 
one of the sets fixed. Simulation results showed that, compared to 
a conventional NoC, the proposed NoC architecture consumes 
less power and reduces the average communication latency.  
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