
An Efficient Dynamically Reconfigurable On-chip Network
Architecture

Mehdi Modarressi1,2, Hamid Sarbazi-Azad1,2, Arash Tavakkol2
1Computer Eng. Dept., Sharif University of Technology, Tehran, Iran

2IPM School of Computer Science, Tehran, Iran
modarressi@ce.sharif.edu, azad@sharif.edu, arasht@ipm.ir

ABSTRACT
In this paper, we present a reconfigurable architecture for
network-on-chips (NoC) on which arbitrary application-specific
topologies can be implemented. The proposed NoC can
dynamically tailor its topology to the traffic pattern of different
applications at run time. The run time topology construction is
realized through a light-weight control network. It involves
monitoring the network traffic in order to detect heavy
communication flows and configuring the topology in order to
reduce the hop count between their source and destination nodes,
while the NoC connectivity is preserved. In this paper, we first
introduce the proposed reconfigurable topology and then address
the problem of run-time topology reconfiguration. Experimental
results show that this architecture effectively improves the
performance of NoCs and reduces the power consumption over
the existing conventional NoCs.

Categories and Subject Descriptors
B.4.3 [INPUT/OUTPUT AND DATA COMMUNICATIONS]:
Interconnections (Subsystems)—topology

General Terms
Design

Keywords
NoC, performance, power, reconfigurable, topology.

1. INTRODUCTION
Application-specific optimization is one of the most effective
approaches to improve power/performance metrics of Network-
on-Chips (NoC) [1]. Customizing the network topology for a
given application is an important application-specific NoC
optimization method which dramatically affects the power
consumption and average latency of NoCs, when running that
application. Like other application-specific optimization methods,
existing methods generate a customized topology and mapping for
a single target application, provided that the application and its
traffic characteristics are known at the design time [2]. However,
several different applications may be integrated onto a single
complex multicore System-on-Chips (SoC). In addition, NoC-
based Chip Multiprocessors (CMPs) are generally applied to run
different applications which may not be known at design time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DAC’10, June 13–18, 2010, Anaheim, California, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Generally, an NoC that is designed to run exactly one
application does not necessarily meet the design constraints of the
other applications. Furthermore, the traffic pattern of a single
application may vary significantly over time.

In this paper, we address the need for dynamic topology
adaption by introducing a reconfigurable NoC architecture which
enables the network topology to dynamically match the
communication pattern of the currently running application.

The reconfiguration of the proposed architecture is achieved
by inserting several simple switches in the network which allows
dynamically changing the inter-node connections and
implementing the topology in which the number of intermediate
routers between the source and destination nodes of high volume
communication flows is reduced by bypassing as many
intermediate routers as possible. This can lead to considerable
performance improvement since the power/latency of the router’s
pipeline stages has a significant contribution to the total NoC
power/latency.

Our early evaluation results using a static design-time
topology generation method showed the effectiveness of this
architecture in reducing NoC power consumption [3]. In this
work, we show the ability of our reconfigurable NoC architecture
in handling dynamic traffic patterns by developing a run-time
topology reconfiguration mechanism. To guarantee the
connectivity of the network when the topology is reconfigured, a
set of links with fixed connections are used along with the
reconfigurable links. This set of links, called the fixed sub-
network (or Fnet), is used to provide permanent connections
among nodes based on a given topology, e.g. mesh, here. The
second set, called the reconfigurable sub-network (or Rnet), on
the other hand, is devoted to establish application-specific
connections between the nodes with high-volume communication
demands. The Rnet is still a packet-switched network, but its
topology is customized for the traffic flows travel over it.

To keep the cost of the proposed NoC equal to a traditional
packet-switched one, the NoC links and resources are divided
between the two sub-networks using Spatial-Division
Multiplexing (SDM). Unlike Time-Division Multiplexing (TDM)
where at each time slot, all the wires of a link are dedicated to
transmission of data from a single source, the SDM technique
allocates a sub-set of the link wires to a given circuit for the
whole connection lifetime.

Improving the power and performance metrics of packet-
switched NoCs by integrating a second switching mechanism has
been addressed in several previous works [4][5][6]. For example,
the long-range links in [6] are constructed to provide shortcut path
between the source and destination nodes of high-volume
communication flows at design-time. The reconfigurability is,
however, the key advantage of our work over long-range links as
it allows the shortcut paths to be constructed dynamically based

on the traffic pattern at run-time. Besides, being established over
conventional NoCs, our architecture still benefits from the
predictability and reusability of regular NoC architectures.

In this paper, we first introduce the proposed NoC
architecture and then propose a run-time topology reconfiguration
algorithm and show its effectiveness in improving the NoC power
and performance metrics.

2. THE PROPOSED NOC
2.1 Reconfiguration Mechanism
The system under consideration is composed of m×n nodes
arranged as a 2D mesh network. In the proposed NoC
architecture, however, the routers are not connected directly to
each other, but connected through simple switch boxes, called
configuration switches (see Figure 1). Each square in Figure 1
represents a network node which is composed of a processing
element and a router, whereas each circle represents a
configuration switch. Figure 1.a shows the internal structure of a
configuration switch. It consists of some simple transistor
switches that can establish connections between incoming and
outgoing links. In this figure, for the sake of simplicity, only a
single wire connection is depicted between each two ports of a
configuration switch. However, there are two connections
between each two ports of a configuration switch in order to route
the incoming and outgoing sub-links of bidirectional links
independently. Actually, the internal connections are
implemented by a multiplexer at each output port of the switch.
We refer interested readers to [3] and [7] for more details of this
architecture, including its architectural features, area overhead,
and reconfiguration latency.

Figure 1. The reconfigurable NoC architecture

2.2 Network Partitioning
As mentioned in Section 1, in this work, we propose to

partition the NoC into two sub-networks using the SDM scheme.
This proposal aims to benefit from the decreased average packet
path length (hop count) of the reconfigurable sub-network, while
preserve the network connectivity via the fixed sub-network.

Applying SDM in a packet-switched network allows having
several links in parallel in the same direction and therefore
increasing the number of distinct paths in that direction. This
increase in the path diversity reduces the head of line (HOL)
blocking and can improve the average latency and throughput of
the network. On the other hand, splitting the links into two parts
may increase the average packet latency as the number of flits of
a packet is increased.

An in-depth analysis of the effect of SDM on the NoC
latency and throughput in [8] shows that splitting the links into
two sub-links increases the throughput by 50-60% with a
negligible negative effect on the average message latency. Thus,
SDM is a suitable bandwidth multiplexing scheme for our NoC,
since in addition to throughput, by selectively employing the sub-
networks, we can also improve the power and latency of the NoC.

Figure 2 illustrates the partitioning scheme, where network
resources (links, buffers, crossbar, and configuration switches) in
an N-bit wide NoC are divided into 2 parallel N/2-bit sub-
networks. The first set of sub-links (the upper part) form Fnet and
the other part is devoted to Rnet. The total buffering space in a
router remains the same as that in the original conventional NoC.
The crossbar switch structure is the same as in a conventional
packet-switched router, but the switch allocator (arbiter) is
divided into two separate Fnet and Rnet allocators.

Although the proposed NoC is not restricted to a specific
switching scheme and routing algorithm, the NoC routers, in this
study, adopt a conventional wormhole switching mechanism.
However, the route computation and switch allocation schemes
are adapted to the new features of the proposed architecture.

In this architecture, packets, on arriving at an input port, are
buffered in R_Buff (in Figure 2) if they are arrived from Rnet,
and in F_Buff, if they are arrived from Fnet. To route a packet,
the router first checks if there exists a long link in the Rnet
originating from the current node destined to some node along the
route towards the packet’s destination. As a packet is only
allowed to use the shortest paths, routing logic checks the (at most
two) output ports along the shortest paths toward the destination
for Rnet links. Between the two Rnet ports, the one which allows
more intermediate nodes to be skipped over is selected. In
parallel, the default routing algorithm (x-y routing) is used to
select the proper output port in Fnet. The header then requests for
the selected Fnet and Rnet (both, if any) partitions of the
corresponding output ports in the switch allocation stage of the
router pipeline. On successful allocation of the requested Rnet
port, the flit withdraws its Fnet request. If the flit wins more than
one ports at the same cycle, it selects the Rnet port. In the current
implementation, deadlock freedom on Rnet is guaranteed using
the well-known escape channel method [9] which involves using
at least two virtual channels per port.

Crossbar

W input

S input

E input

N
 o

ut
pu

t

E
 o

ut
pu

t

W
 o

ut
pu

t

S
 o

ut
pu

t

N bits

N bits

FN
Alloc.

RN
Alloc.

{ {N bits

N bits

East Output Alloc.

Pa
rt

iti
on

 v
ec

to
r

N
 in

pu
t p

or
t

E output port

N
bits

Buffer

{ M Flits

{ N
bits

N
bits

N input{ M Flits

N/2

N/2 R_Buff

F_Buff

Figure 2. The proposed router architecture

Although this section assumes that the link-width is equally
divided between the Fnet and Rnet sub-networks, this architecture
is capable to assign different number of wires to each sub-
network. This can be achieved by using a bit-vector register,
called the partition vector (PV), which determines the bit-width
assigned to each sub-network. Setting a bit in PV to 1 indicates
that the corresponding bit in the NoC link is assigned to the Fnet,
otherwise it belongs to the Rnet. PV is used in the network
interface of each node to determine the flit width of packets.
Setting the flit width to an appropriate value can be easily carried
out by shift registers. Clearly, the flit width should be long
enough to guarantee that the routing and other required
information can be embedded into a single flit (the header flit).
Moreover, PV is used at the crossbar to direct the flits to

appropriate output port wires (Figure 2), according to the decision
made by each arbiter (Fnet allocator and Rnet allocator).
Reconfigurability is the key point of the proposed partitioning
method, in that the link-width of Fnet and Rnet can be changed at
run-time by simply changing the bits of the PV register. The
network can even be converted to a fully customized or fully
fixed packet-switched network, based on the current traffic
pattern.

3. TOPOLOGY RECONFIGURATION
ALGORITHM
This section proposes a scheme for topology reconfiguration
which dynamically changes the Rnet connections in response to a
change in the current on-chip communication pattern. Here, it is
assumed that each task is non-migratory and already mapped onto
some node. The whole procedure relies on monitoring the traffic
generated by each node in order to detect high-volume
communication flows. A mechanism then selects the best Rnet
path for the detected flows. The path must include only the
routers and configuration switches along the shortest paths
between the source and destination nodes of the requesting flow.
Finding a new topology using this procedure may take a few
clock cycles. However, this procedure is done in parallel with
normal network operation and packets do not wait for the new
Rnet configuration to be completed; they continue traveling on
the current Fnet and Rnet configuration. Therefore, this setup
latency does not degrade the network performance.
Traffic Monitoring. Traffic monitoring is simply done at each
node by storing the number and the destination node addresses of
the packets the node sends. The weight of each flow is an m-bit
value which is set to the m most-significant bits of the register
holding the traffic volume, multiplied by the traffic flow length
(defined as the Manhattan distance between the source and
destination nodes of the flow); this is because as the length of a
flow increases, the contribution of the flow in the entire on-chip
traffic increases.
Once the weights are periodically updated at some specific times,
each node sends the weight of its flows weighting higher than a
threshold to a global arbiter. The threshold of each node is
defined as the average communication volume of the flows
originating from it. The arbiter then sorts the communication
flows in order of their communication volume and tries to build a
path with minimum cost for each flow in the order. We calculate
the cost of a path as the cumulative cost of the routers and
configuration switches it includes. According to the power and
latency analysis presented in [3], we assign a cost of 1 to a
configuration-switch and a cost of 5 to a router.
Initially, in the topology selection algorithm, the internal
connections of all configuration switches are un-configured.
Finding a route may involve configuring the switches which are
not yet configured in order to bypass some intermediate routers
and make a shorter connection between two given nodes. The
algorithm can configure the un-configured internal connections of
the configuration switches, but not the connections that have
already been configured at previous iterations of the algorithm.
 Path Selection Algorithm. We employ a simple and tiny set-up
network (or control network) along with the main data network to
configure the paths in the Rnet. The size of the setup network is
the same as the size of the main data network. Each node in the
setup network corresponds to a node (router or configuration
switch) in the data network with the same address. Having a small

bit-width and a simple internal structure, the area of the setup
network is negligible, compared to the main data-network. It also
consumes negligible power due to its infrequent activity and small
bit-width. To calculate the minimum cost for an Rnet path for a
flow, the cost of the path is propagated from the source node
toward the destination node, along all of the shortest paths. In this
way, initially, the source node sends its cost as the initial partial
path cost to its neighboring nodes along the shortest path towards
the destination. Each node (router or configuration switch)
receives the partial path cost (the cost of the path from the source
node to the current node), adds it to its cost, and propagates the
result to the next nodes towards the destination, until the final cost
is received at the destination node. If the current node is a router,
it sends the cost to its neighboring configuration switches along
the shortest paths. Similarly, configuration switches send the
updated cost to appropriate neighboring routers or configuration
switches. However, the current configuration switch may be
already configured in previous steps of the algorithm, in such a
way that the port through which the cost reaches the switch is
connected to some output port. In this case, the cost is sent along
the direction determined by the current switch configuration,
provided that the direction is along the shortest path towards the
destination. Starting from the source node, the cost values are
forwarded to the destination node one hop per cycle. The
intermediate nodes may receive two costs from the neighboring
nodes at the same cycle. Each node selects the minimum cost for
propagation (and ignores the other one.

0

20

40

60

80

0 0.01 0.02 0.03

Av
er
ag
e
Pa
ck
et
 L
at
en

cy

Injection Rate

Reconf. NoC
Conv. noC

0

20

40

60

80

0 0.02 0.04 0.06
Av

er
ag
e
Pa
ck
et
 L
at
en

cy
Injection Rate

Reconf. NoC
Conv. noC

Figure 3. The average packet latency (cycles for 8-flit packets)
for the proposed and conventional NoCs, under 1-hot flow (a),
2-hot flow (b), and 3-hot flow in a 6×6 NoC
A node also ignores a received cost, if the link between the
current node and the node from which the cost is received does
not have enough bandwidth to accept the requesting
communication flow.
Each node keeps the track of the path with the minimum cost by
storing the direction from which the minimum cost is received.
Once the final cost reaches the destination node, indicating that an
Rnet path with the minimum possible cost is found for the flow,
the destination node sends back an acknowledgement signal
toward the source node along this path. The connection is then
established in the NoC by configuring all according configuration
switches within the path. Afterwards, the algorithm continues
with the next flow, until all requesting flows are serviced. Since
the path exploration is carried out within the shortest path area,
the worst case happens when the selected path (if any) includes
the same number of routers as a shortest path in the Fnet.

4. TOPOLOGY RECONFIGURATION
4.1 Synthetic Traffic
As shown in [10], most of the realistic CMP workloads exhibit a
high degree of temporal and spatial communication locality, so

we now use a synthetic traffic with similar characteristics to
commercial and scientific CMP workloads. To this goal, we use
the three synthetic traffic patterns presented in [10], to evaluate
the effects of the presented architecture on the CMP workloads. In
the first pattern, the 1-hot flow traffic pattern, each node sends
80% of the generated packets to exactly one destination node and
the remaining 20% packets to other randomly chosen nodes. In
the other traffic pattern, the 3-hot flow traffic pattern, each node
sends 20% of the generated packets equally randomly to the
network nodes and the remaining 80% are sent to three specific
nodes. The hot destination nodes of each source node are selected
randomly from other network nodes.
Each simulation runs for 1,000,000 cycles. The randomly-selected
hot destination nodes of each source node are changed every
200,000 cycles and the reconfiguration procedure is initiated
every 100,000 cycles.
We have evaluated the proposed NoC architecture using
Xmulator, a fully parameterized simulator for interconnection
networks [11]. The Orion power library [12] integrated to
Xmulator calculates the power consumption of the NoCs.
The results are compared against a conventional mesh NoC with
speculative 4-stage pipelined routers employing an adaptive
routing algorithm. For all NoCs, simulations are performed for a
128-bit wide system, speculative 4-stage pipelined routers, 2
virtual channels per port, 8-flit deep buffers, and 8-flit packets.
The power results reported by Orion are based on an NoC
implemented in 65 nm technology and the working frequency of
the NoC is set to 500 MHz. The link-width of the Rnet and Fnet
are set to 96 and 32 bits, respectively.
Performance Results. Figure 3 shows the average packet latency
of the proposed NoC and the conventional NoC as a function of
the injection rate (packet per node per cycle) under hot-flow
synthetic traffics in a 6×6 mesh NoC. As shown in the figure, the
proposed architecture improves the latency of the NoC. The
reduction in latency over the conventional NoC (before the
saturation point of the conventional NoC) is 28% for the 1-hot
flow, and 13% for the 3-hot flow traffic. Moreover, our NoC
significantly push the NoC throughput by around 25% over the
conventional NoC. As we move from the 1-hot flow traffic to the
3-hot flow, increasing the number of favored destinations of each
source node results in decreasing the advantages of the proposed
approach. This is because the number of high-volume connections
is increased while the network resources that can be used by long
links are fixed. Thus, the Rnet cannot provide long connection for
some traffic flows and larger portion of the traffic is directed
through the packet-switched network.
Energy Results. We measure the energy consumption of the NoC
in terms of energy per flit (including the setup network energy) at
the traffic generation rate just before the saturation point of the
conventional NoC. Our proposed NoC outperforms the
conventional NoC, with 22% energy reduction for the 1-hot flow
and 9% reduction for the 3-hot flow traffic loads. This is because
the proposed NoC forwards a significant portion of the on-chip
traffic over short-cuts, thereby the power-hungry buffering
operations are removed. We omit the power diagrams due to the
limited space.

4.2 SPLASH Traffic
Now, we evaluate the effectiveness of the proposed NoC under
the traffic traces generated from SPLASH-2 benchmark suit [13].
The parameters of the NoCs are set like in the previous section.
We set the period of the topology reconfiguration procedure for
each benchmark separately in such a way that the procedure is
invoked 5 times during the execution of the benchmark. Figure 4

compares the latency and energy obtained by the proposed and
conventional NoCs across the SPLASH-2 traces, on a 7×7 NoC.
The results are normalized to the results given by our NoC. On
average, the proposed architecture outperforms the conventional
NoC by 19% and 12%, when considering the packet latency and
energy, respectively.

Figure 4. The reduction in average packet latency (a) and energy
consumption (b) of the proposed NoC over the conventional NoC

5. CONCLUSIONS
We proposed a dynamically reconfigurable architecture for NoCs
on which arbitrary application-specific topologies can be
implemented. The reconfigurability of the proposed NoC
architecture allows it to dynamically tailor its topology to the
traffic pattern of different applications at run time. The network
connectivity in our NoC is guaranteed by partitioning the entire
links into two sets and keeping the connection of the links inside
one of the sets fixed. Simulation results showed that, compared to
a conventional NoC, the proposed NoC architecture consumes
less power and reduces the average communication latency.

6. REFERENCES
[1] J. Owens, W. J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L. S.

Peh, “Research challenges for on-chip interconnection networks”, IEEE
Micro, Vol. 27, No. 5, 2007, pp. 96-108.

[2] T. Bjerregaard, and S. Mahadevan, “A survey of research and practices of
network-on-chip”, ACM Computing Surveys, Vol. 38, No. 1, 2006, pp.1-
51.

[3] M. Modarressi, and H. Sarbazi-Azad, “Power-aware mapping for
reconfigurable NoC architectures”, In Proc. of ICCD, 2007, pp. 417-422.

[4] M. Modarressi, H. Sarbazi-Azad, M. Arjomand, “An SDM-Based Hybrid
Packet-Circuit-Switched On-Chip Network”, in Proc. of DATE, 2009.

[5] A. Kumar, et. al, “Express virtual channels: towards the ideal
interconnection fabric”, in Proc. of ISCA, 2007, pp.150-161.

[6] U. Ogras, and R. Marculescu, “Application-specific network-on-chip
architecture customization via long-range link insertion”, in Proc. of DAC,
2005.

[7] M. Modarressi, H Sarbazi-Azad, “A High-Performance and Low-Power
Reconfigurable Network-on-Chip Architecture”, Chapter 13 in Dynamic
Reconfigurable Network-on-Chip Design: Innovations for Computational
Processing and Communication, IGI Global Pubs., 2010.

[8] C. Gomez, et al., “Exploiting Wiring Resources on Interconnection
Network: Increasing Path Diversity”, in Proc of 16th Euromicro PDP,
2008.

[9] W. J. Dally, and B. Towles, Principles and practices of interconnection
networks, Morgan Kaufmann Publishers, 2004.

[10] M. Modarressi, H. Sarbazi-Azad, A. Tavakkol, “Low-power and High-
Performance On-Chip Communication Using Virtual Point-to-Point
Connections”, in Proc. of NoCS, 2009, pp. 203-213.

[11] Xmulator NoC Simulator, 2008, from http:// www.xmulator.org, 2009.
[12] A. Kahng, B. Li, L. Peh and K. Samadi, “ORION 2.0: A Fast and Accurate

NoC Power and Area Model for Early-Stage Design Space Exploration“,
In Proc. of DATE, France, 2009.

[13] SPLASH-2, http://www.flash.stanford.edu/apps/SPLASH/.

0

5

10

15

20

En
er
gy
 R
ed

uc
ti
on

(%
)

