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Abstract— In this paper, we propose a processor allocation 
mechanism for run-time assignment of a set of communicating 
tasks of input applications onto the processing nodes of a Chip 
Multiprocessor (CMP), when the arrival order and execution life-
time of the input applications are not known a priori. This 
mechanism targets the on-chip communication and aims to 
reduce the power and latency of the NoC employed as the 
communication infrastructure. In this work, we benefit from the 
advantages of non-contiguous processor allocation mechanisms, 
by allowing the tasks of the input application mapped onto 
disjoint regions (sub-meshes) and then virtually connecting them 
by bypassing the router pipeline stages of the inter-region 
routers. The experimental results show considerable 
improvement over one of the best existing allocation mechanisms.  

Keywords-chip multiprocessors; network-on-Chip; processor 
allocation; contiguous allocation; non-contiguous allocation;  
power consumption;  performance. 

I.  INTRODUCTION  

In networks-on-chip (NoCs), the problem of task to node 
mapping, which determines on which node (or respective 
processing core) each task should be placed at, dramatically 
affects network performance characteristics, such as average 
inter-core distance and communication flow distributions [1]. 
These characteristics, in turn, determine power consumption 
and average network latency of the system. In [2], it has been 
shown that selectively mapping the tasks to NoC nodes results 
in a considerable power reduction and performance 
improvement, compared to an NoC with randomly mapped 
tasks.  
     In addition to the design-time mapping schemes, 
incremental mapping or processor allocation is another 
problem in large CMPs. Processor allocation deals with the 
problem of mapping the tasks of a newly arrived application to 
unallocated cores at run-time without interfering the execution 
of existing applications in the system. In this scenario, the 
exact sequence in which different applications arrive in the 
system and their lifetimes are unknown a priori. 

The existing techniques of processor allocation in 
traditional parallel machines are generally divided into two 
groups: contiguous and non-contiguous [3]. In contiguous 
allocation techniques, the tasks of an application are mapped 
onto a set of adjacent network nodes which result in low 
communication overhead [4-5]. However, the main problem of 

this approach is its low system utilization, since an application 
has to wait for a properly sized and shaped contiguous group 
of processors, while there may be sufficient number of free 
processors in non-contiguous regions [3][6]. Non-contiguous 
allocation tries to mitigate this problem by mapping the tasks 
on multiple disjoint smaller sub-networks rather than always 
waiting until a single sub-network of the requested size being 
available. 

 Lifting the contiguity condition in non-contiguous 
allocation is expected to increase processor utilization. It may, 
however, lead to more traffic load and higher communication 
delay/power since it is very likely that the tasks of an 
application are mapped onto distant regions of the network 
and their packets have to travel a longer distance through 
different intermediate sub-networks.  

Most existing processor allocation methods are proposed 
for the traditional parallel machines. Recently, few researchers 
have focused on processor allocation in NoC-based CMPs [7-
8]. Among them, the run-time incremental mapping presented 
by Chou and Marculescu [8] is more related to our work. They 
split the mapping process into two steps: region selection and 
application to region mapping. The first step tries to select a 
near convex region in such a way that the contiguity of the 
remaining free nodes is maximized and subsequent 
applications can still select a near convex region. During 
region selection, a node that has most of its neighbors utilized 
is selected first, as it is very likely to be later isolated.    
Moreover, the nodes with less distance to the boundaries of 
the current region are more likely to be included. After region 
selection procedure, every task-graph vertex (application task) 
is assigned to some node in the region. The algorithm, in this 
step, aims to minimize the inter-processor communication. It 
also tries to meet task deadlines by assigning tasks to a node 
with appropriate voltage level.  

In this paper, we propose a processor allocation scheme 
which aims to benefit from the good resource utilization of 
non-contiguous allocation schemes while behaving close to 
contiguous allocation schemes. Our method relies on forming 
virtual contiguous regions which may be composed of several 
non-physical contiguous groups of processors. The NoC then 
provides low-power and low-latency communication for the 
packets when traveling among different parts of a virtual 
region.  
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Our proposed approach adopts a hybrid NoC supporting a 
second low-power and low-latency switching method in 
addition to packet switching. In such NoCs, we direct 
communication among the nodes inside a region (or sub-
network) through packet-switching, as this switching method 
benefits from flexibility, scalability and high resource 
utilization. The inter-region traffic, however, is handled by the 
second switching method to hide the latency of 
communication flows between the nodes in disjoint parts. 

Investigating several hybrid NoCs with efficient switching 
methods, such as EVCs [9], VIPs [10], and hybrid 
packet/circuit-switched NoCs [11], we employ the idea 
presented in [10] for underlying NoC structure. In [10], virtual 
point-to-point (VIP) connections are integrated into a 
conventional packet-switched NoC to support high volume 
communication flows which can work better for 
communications between distant nodes. VIPs can be 
constructed in demand between any two NoC nodes at run-
time and involve negligible area overhead.  

VIPs give a power and latency close to physical dedicated 
point-to-point links [10]. They provide low-power and low-
latency virtual dedicated paths between any two nodes by 
bypassing the pipeline of the intermediate routers. In this 
design, one virtual channel (VC) of each physical channel is 
designated to bypass the router pipeline stages. VIPs provide 
connection-oriented communication and, once created, their 
paths are stored in the routers along the path. In the VC 
assigned to VIPs, the buffer is replaced by a register (1-flit 
buffer) which holds the flits arriving on the VC. In addition to 
the reduced power and latency, VIPs isolate the inter-region 
from the intra-region traffic which allows applying better 
traffic management (such as bandwidth allocation and priority 
assignment) schemes. 

In this paper, we introduce a VIP-enabled NoC architecture 
and show how it can be exploited in order to form virtual 
regions and allocate them to the new coming applications, in 
such a way that the total on-chip power and average packet 
latency is minimized. We use a centralized scheme to perform 
job mapping [12-13]. Since, most current MPSoCs and CMPs 
have a central root or configuration process (or processor) that 
initializes, configures, and manages the system [14], we 
consider the task of processor allocation is realized by this 
processor. Generally, a centralized managing scheme may 
suffer from scalability problems, but this scheme can 
efficiently manage processor allocation, since the manager is 
activated only when a new application arrives at the system; in 
a realistic scenario, arrival of new applications and completion 
of running applications do not occur frequently.  

The rest of the paper is organized as follows. Section 2 
introduces the NoC architecture used in this work. We present 
the proposed run-time processor allocation algorithm in 
Section 3. In Section 4, the proposed algorithm is compared to 
a state-of-the-art allocation algorithm in terms of power 
consumption and network performance. Finally, Section 5 
concludes the paper.    

II. NOC ARCHITECTURE 

The routers in our design are baseline wormhole-switched 
routers which are slightly modified in order to support VIP 
connections. In this section, first, we briefly describe the VIPs. 
We refer interested readers to [10] for more details on VIPs. 
Although the NoC we consider in our work is not restricted to 
a specific switching and routing scheme, the NoC router, in 
this study, employs a wormhole switching mechanism with 
speculative 4-stage pipelined routers [15]. A state-of-the-art 
router speculatively performs virtual-channel allocation (VA) 
and switch allocation (SA) in parallel resulting in 4-stage 
routers, including buffer write (BW), route computation (RC), 
switch and virtual-channel allocation (SA+VA), and switch 
traversal (ST) stages. In this scheme, the routers speculate that 
a waiting packet will succeed in output VC allocation stage. 
Non-speculative requests (flits which have already been 
allocated a VC) are prioritized over speculative ones, so 
performance degradation may be caused by unsuccessful 
speculations. 

VIPs can be considered a kind of circuit-switching scheme. 
However, they do not suffer from resource utilization and 
performance degradation (due to the circuit setup time) issues 
of the conventional circuit-switching. They can be added to a 
packet-switched NoC in order to improve its performance. 
Here, in one virtual channel (virtual channel 0) of each 
physical channel, the buffer is replaced by a register (1-flit 
buffer).  These virtual channels are devoted for establishing 
VIP connections between any two given nodes. The switch 
allocator unit is also slightly modified and each output port 
contains a VIP allocator that, for each output port belonging to 
a VIP, determines (using a 2-bit register) the input port 
connected to this output port along the VIP. There is no need 
for arbitration among VIPs, as VIP connections are not 
allowed to share the same links (i.e. each router port can be 
used by at most one VIP connection). 

A VIP for a communication flow is established by 
appropriately setting the VIP allocators in each router in such 
a way that the VIP registers in each router are connected to 
proper output ports and then to the registers in the next router 
along the VIP. As a result, at each hop, the VIP data are 
forwarded in two stages: crossbar traversal and link traversal, 
with VIP registers acting as staging registers. Since the VIP 
flits bypass the other router pipeline stages, the power 
consumption and delay related to buffer read and write, route 
calculation, and arbitrations are removed. Unlike dedicated 
point-to-point links, which are physically established between 
the communicating nodes of a multi-core chip (based on the 
communication pattern of the target application) and are fixed 
during the system life-time, the VIP connections are 
dynamically reconfigurable and can be established based on 
the traffic pattern exhibited by the running application. It is a 
critical feature for processor allocation algorithms, as the VIP 
connections can be built and torn down when the applications 
start and stop execution.  

Supporting VIPs in a baseline packet-switched router 
involves minor manipulating the baseline router architecture 
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and impose a completely negligible area overhead [10]. VIPs 
do not suffer from the resource utilization problems of 
TDMA-based circuit-switched NoCs, since NoC cycles (time 
slots) are not reserved for the two NoC parts (packet-switched 
part and VIPs). Instead, each part uses the links when it has 
incoming flits to forward and the flow control and bandwidth 
allocation mechanisms developed for them guarantees that 
each part is provided with the required bandwidth. 

III. VIP-SUPPORTED PROCESSOR ALLOCATION  

A. Overview of the Approach 

In this section, we describe how to exploit the capabilities 
of the NoC described in Section 2 in order to find an 
appropriate solution for the processor allocation problem. The 
solution should minimize the on-chip communication power 
and latency and increase resource utilization by considering all 
unallocated processor for placing a new task.   
The NoC is assumed to be an m×n mesh with the router 
architecture described above. Each input application is 
described as a Communication Task Graph (CTG). The CTG 
is a directed graph G (V,E), where each viєV represents a task, 
and a directed edge ei,jєE characterizes the communication 
from vi to vj. The communication volume (bits per second) 
corresponding to edge ei,j is denoted by t(ei,j). 

Simply stated, for a new input application, our objective is 
to map the tasks of the application into different nodes of a 
mesh-connected NoC in such a way that the total on-chip 
power and latency is minimized. To this end, the algorithm 
tries to map the tasks onto a contiguous sub-network. 
However, if it is not possible to find a contiguous region with 
sufficient number of processors, the tasks are mapped onto 
some non-contiguous sub-networks which use VIPs to 
communicate with each other. 

As mentioned before, the allocation process is conducted 
by a root processor and in a centralized manner. The root 
process keeps the NoC state, i.e. the location of all existing 
applications, the traffic assigned to each NoC link, and the 
path of all existing VIP connections. It also keeps the state of 
all NoC nodes and recognizes which nodes are free or 
allocated. The root process is activated when a new 
application arrives at the system or one of the running 
applications completes its execution. It conducts allocating 
and releasing resources and then updates the NoC state. Since 
the root process performs the allocation and de-allocation of 
processors, it knows the characteristics of the on-chip traffic 
(VIP paths and link loads) and availability of nodes. Thus, it 
has all the required NoC state information and do not need to 
collect them from the NoC.  

B. The Proposed Algorithm 

The processor allocation is accomplished in some steps as 
follows. 

1) Partition the CTG vertices into two sets: Mapped 
(containing the already mapped CTG vertices and is initially 
empty) and Unmapped (which includes the CTG vertices not 

yet mapped and initially contains all CTG vertices). Once a 
vertex is mapped, it is moved to the Mapped set. 

2) Similarly, partition the NoC nodes into two sets: 
Allocated (including the nodes to which a CTG node has been 
already assigned) and Unallocated (which includes the free 
nodes). Unallocated nodes may be located in some non-
contiguous regions, or free contiguous regions.  

3) Find a free region with equal (or the nearest larger) 
size to the size (number of vertices) of the application. If there 
does not exist a contiguous group of free processors with the 
size equal to or larger than the CTG size, find a region with 
nearest smaller size. Map the task with the maximum 
communication demand onto one of the region nodes with 
maximum number of neighbors. The communication demand 
of a vertex is defined as the cumulative weight of the incoming 
and outgoing edges connected to it.   

4) Repeat the following steps until the Unmapped set 
becomes empty, i.e. all CTG vertices are mapped: 

a) Select the core vi that communicates most with the 
Mapped members. 

b) Consider the smallest convex region that cover all 
Mapped members vj which communicate with vi (ei,jєCTG). We 
refer to this convex region as search region (Fig. 2). Examine 
all unallocated nodes inside search region for placing vi. For 
each selected node x: 

 Select the CTG edges between the selected core vi and each 
Mapped member vj, which is mapped onto NoC node y, in 
order of their communication volumes. 

 The communication of each node with its adjacent nodes 
(neighboring nodes at distance 1) is handled by the packet-
switched network. However, each node requests for a VIP to 
communicate with farther nodes, if the destination task is 
not on an adjacent node. Consequently, if the distance 
between x and y is 1, consider ei,j for using only packet-
switched network, otherwise in addition to packet-
switching,               examine the possibility of constructing a 
VIP for the edge (i.e. the existence of sufficient unused 
resources) along one of the shortest paths between x and y. 
However, if a VIP for such edges could not be found, they 
should be handled by the packet-switched network. Map the 
core onto the node which minimizes 

, , ,( ) ( , ( )) ( ( ) (1 ( )) )
v V connected to vj i

i j j i j vip i j pst e dist x M v VIP e W VIP e W


          

(1) 

where dist(a,b) is the Manhattan distance between NoC 
nodes a and b, M(vj) is the NoC node onto which the CTG 
vertex vj is mapped, and t(ei,j) is the communication volume 
of edge ei,j. VIP(eij) is defined as  
 

1,
( )

0,

if a VIP is reserved for e
VIP e

otherwise

 
                 

(2) 

Wps and Wvip are two weights that reflect the cost of 
traversing one hop over the VIP and packet-switched  
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network, respectively. Based on evaluating the power 
consumption of VIPs and packet-switching using Orion 
power library [16], we roughly set Wps and Wvip to 5 and 3, 
respectively.  
If all nodes inside search region are already allocated or 

cannot be used due to bandwidth limitation of links, examine 
the nodes within the fixed local neighborhood of d hops of the 
region boundary nodes (Fig. 1). For each value of d, all 
possible nodes at that neighborhood are examined within this 
step. The value of d starts from 1 and the nodes within each 
neighborhood are handled in a separate round of this step. d 
increases by 1 until a free node is found. 

The path should not violate the bandwidth of the network 
links (to avoid congestion). More formally, the bandwidth 
constraint of each NoC link lk must be satisfied as 

 
  

,

, ( ) ( , )
i j

k
k k

e E

l BW l X i j
 

                       (3)                                       

 
where BW(lk) is the bandwidth of link lk and XK(i,j) and is 
obtained by 
 

, ,( ), ( )
( , )

0,

i j k i jk
t e if l path e

X i j
otherwise

 


              (4) 

                                                                                          
where path(ei,j) represents the set of links onto which CTG 
edge ei,j (with volume t(ei,j)) is mapped either on a VIP or on a 
packet-switched part. 

After finding a route for all CTG edges, VIP connections 
are constructed by setting the VIP allocators, while packet-
switched routes are set up by appropriately setting the routing 
table of the routers. 
Although the objective of this algorithm is defined to optimize 
the power consumption, it is obvious that by mapping the 
tasks on nearby nodes and also not allowing the bandwidth of 
each link to be violated, the algorithm improves the average 
packet latency as well.  

The algorithm proposed in this paper is simple and 
compared to other related work [7][8], involves moderate 
computation to perform mapping. Consequently, according to 
the run-time and power analysis in [8], the run-time of our 
algorithm is in the order of microseconds and hence can 
conduct the processor allocation procedure at real-time. 

IV. EVALUATION 

A. Simulation Environment 

In this section, we evaluate the proposed processor 
allocation method. We compare our processor allocation 
algorithm against the allocation scheme presented in [8] 
referred as incremental mapping. This allocation scheme is 
one of the most recent processor allocation approaches shown 
to have good performance with respect to other existing 
methods [8]. It works on NoCs with several voltage levels, but 
we set the voltage of all nodes to the same value. It works on a  

 

 
Figure 1. The shaded area represents search region for a new task which 

communicates with the tasks placed on the nodes marked by X. The black 
nodes are the nodes within the fixed local neighborhood of 1 hop of the region 

boundaries. 

mesh NoC with 4-stage speculative pipelined routers. The 
packet-switched part of our NoCs uses the same router 
architecture. Both allocation schemes are implemented in 
XMulator [17], an event driven flit level NoC simulator coded 
in C++. The simulator is augmented by Orion power library in 
order to evaluate the power consumption of the NoCs under 
the considered allocation strategies. The power results 
reported by Orion are based on a 64-bit NoC implemented in 
65nm technology and the working frequency of the NoC is set 
to 2 GHz.  

We use SPLASH-2 [18] traffic traces to evaluate our 
method. The traces are collected for different application 
sizes. The size varies from 3×3 to 7×7. The NoC size for this 
experiment is 10×10. We construct the communication task-
graph of each application by profiling the inter-node 
communications in advance. 

B. Experimental Results 

In the first scenario, we assume that all the applications run on 
the system are the same, but with different sizes. There are 
two packet sizes: 3 and 5 flits corresponding to the request and 
reply packets and the NoC buffers are 8-flit deep. The NoC 
with the incremental mapping uses 2 virtual channels per 
physical channel. Our NoC replaces one of the virtual 
channels with 1-flit VIP buffers and uses one virtual channel 
and one VIP latch per port. 

In these experiments, we generate a random application 
size between 3×3 and 7×7 tasks. The application lifetime, i.e. 
the number of cycles it is running on the system is also 
selected randomly between 150000 and 200000 cycles. If 
there is sufficient number of free nodes, the application is 
mapped into the NoC and this procedure continues with a new 
application. Otherwise, the application waits until a running 
application is finished and the NoC has enough nodes to host 
it. We refer to the rate of application acceptance obtained by 
this method as λfull.  
Fig. 2.a displays the average packet latencies given by the 
VIP-based and the incremental mapping algorithms for 
different SPLASH programs where the applications with 
random sizes enter the system with rate λfull during 10 million 
cycles of simulation. Both networks work under the same 
input scenario. As Fig. 2.a shows, the proposed method 
outperforms the other considered method by up to 30% (26% 
on average) across all of the benchmarks. 

The energy per flit consumed by the networks is depicted 
in Fig. 2.b and shows that following the same trend as the 
latency, our method gives up to 33% (29% on average) 
reduction in energy consumptions, compared to the other  
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Figure 2. The average network latency (a) and energy per flit (b) of the 
proposed processor allocation and the incremental mapping.  

 
considered allocation algorithm. The obtained improvements 
are mainly due to the fact that the VIPs forward a significant 
portion of the inter sub-network traffic over short-cut paths, 
thereby the power-hungry buffering and time-consuming 
allocation operations are removed. 

We then consider another scenario in which the NoC 
accepts a combination of the SPLASH applications. In this 
scenario, in addition to the application size and life-time, the 
application type is also selected based on a uniform 
distribution.   

Fig. 3 shows the latency and energy consumption of the 
two NoCs along the time. In these figures, each data point 
stands for the average energy per flit and latency of the 
network in a 2.5 million cycle time intervals. 

As the Fig. 3 shows, our method always outperforms the 
other considered processor allocation method and decreases 
the energy consumption. When some old applications leave 
the system, the free processors form scattered and non-
contiguous regions. In this case, the capability of the VIPs in 
virtually connecting these regions is used to optimize the 
power and performance of communication. 

In these experiments, when larger applications arrive at the 
system, the improvement obtained by our proposed 
methodology increases. This is due to the fact that large 
applications are more likely to be mapped onto several non-
contiguous regions and benefit more from the VIPs. 

Table 1 shows the minimum, maximum, and average VIP 
length and the minimum, maximum and average percentage of 
the traffic handled by VIPs during the system life-time for the 
above scenario (reported in Fig. 3) across all data points. As 
mentioned before, VIPs absorb a significant portion of the on-
chip traffic and handle it with lower power consumption and 
latency. 

To study the impact of the buffer depth on the obtained 
power and performance improvement, we repeat the 
experiments with the previous parameters, but with a buffer 
depth varying from 2 to 40 flits. Fig. 4 displays the results 

under a random combination of SPLASH applications with the 
arrival rate of λfull. 
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Figure 3. The average network latency and energy per flit of the proposed 

processor allocation and the incremental mapping.  

Table I. The traffic of the network handled by VIPs and the length of the formed VIPs 

  Max. Min. Average 
VIP Traffic Coverage (%) 49% 22% 34% 

VIP Length (Hop) 8 3 4.84 

 
As the fig. 4 shows, our NoC provides lower latency and 

energy values for all buffer sizes. However, as the buffer size 
is increased, the obtained energy improvement increases. 
When the buffer depth is increased, the performance is 
improved as a result of the increased NoC capacity to accept 
more traffic. However, it also increases energy consumption, 
as larger buffer arrays consume more power. In our NoC, a 
portion of the traffic is handled by VIPs and does not pass 
through buffers, so the negative effect of the increased buffer 
size on the energy consumption is moderated.  
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Figure 4. The average network latency (a) and energy per flit (b) of the 

proposed processor allocation and the incremental mapping for different 
buffer sizes. 
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Figure 5. The average network latency (a) and energy per flit (b) of the 
proposed processor allocation and the incremental mapping for two different 

arrival rates. 

We have also studied the effect of the average arrival rate 
of the application on the obtained performance improvement. 
For this purpose, we consider the random combination of 
SPLASH programs and calculate λfull. Then, we set the arrival 
rate of the applications to λfull/10 and λfull/2 and repeat the 
experiments. 
That is the next application to be run, its size, and lifetime are 
generated like the previous experiments, but the arrival rate is 
determined based on a Poisson distribution with the mentioned 
rates. Fig. 5 outlined the performance and power 
improvements given by our algorithm over the incremental 
mapping algorithm for these scenarios. The figure indicates 
that for low arrival rates, the energy consumption and latency 
difference of the two networks is not big.  

At lower arrival rates, the network has more number of 
free processors on average, and it is more likely for both 
algorithms to find a contiguous group of free processors to 
allocate to a new application and thus the advantages of VIPs 
in forming virtual contiguous regions is not fully exploited. 

V. CONCLUSION 

This paper targeted the well-known processor allocation 
problem in NoC-based CMPs. Processor allocation or 
incremental application mapping deals with run-time 
assignment of a set of communicating tasks of an input 
application onto unallocated nodes of a CMP when the arrival 
order and execution lifetime of the input applications are not 
known a priori. Focusing on on-chip communication, we used 
a hybrid switched NoC in which packet-switching and virtual 
point-to-point connections are integrated into the same NoC. 
The tasks of a single application are mapped onto a virtual 
region which may consist of several non-contiguous groups of 
processors. The virtual point-to-point links guarantee low-
latency and low-power communication among different parts 
of a virtual region, while packet switching part handles the 
traffic inside each contiguous region. This mechanism benefits 
from the advantages of both traditional contiguous and non-
contiguous processor allocations mechanisms. The 
experimental results showed considerable improvement over 
one of the best existing allocation mechanisms.  

Integrating task migration into our algorithm in order to 
achieve better mappings can be considered as a future work. 
Designing a light-weight parallel architecture for 
implementing this algorithm in hardware is another work in 
this line. The designed logic can be integrated onto the CMP 
and boost the performance. 

ACKNOWLEDGMENT  

The research of H. Sarbazi-Azad and M. Modarressi was 
supported in part by Iran Telecommunication Research Center 
(grant no. t/ ١١٣١۴/۵٠٠ ). 

REFERENCES 
[1] A. Jantsch, and H. Tenhunen, Networks on Chip, Kluwer 

Academic Publishers, 2003. 
[2] J. Hu, and R. Marculescu, “Energy- and Performance-aware 

Mapping for Regular NoC Architectures”, IEEE Transactions 
on Computer-Aided Design of Integrated Circuits and Systems, 
Vol. 24, No. 1, 2005, pp. 551-562. 

[3] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. M. 
Mackenzie, “Non-contiguous Processor Allocation Strategy for 
2D Mesh Connected Multicomputers based on Sub-meshes 
Available for Allocation”, in Proc. of International Conference 
on Parallel and Distributed Systems (ICPADS'06), 2006. 

[4] K. Li and K.-H. Cheng, “A Two-Dimensional Buddy System for 
Dynamic Resource Allocation in a Partitionable Mesh 
Connected System”, Journal of Parallel and Distributed 
Computing, Vol. 12, No. 1, pp. 79-83, 1991. 

[5] B. S. Yoo, C. R. Das, “A Fast and Efficient Processor Allocation 
Scheme for Mesh-Connected Multicomputers”, IEEE 
Transactions on Parallel & Distributed Systems, Vol. 51, No. 1, 
pp. 46-60, 2002. 

[6] I. Ismail and J. Davis, “Program-based static allocation policies 
for highly parallel computers”, in Proc.s of the IPCCC 95, pp. 
61-68, 1995. 

[7] M. Faruque, R. Krist, and J. Henkel, “ADAM: Run-time Agent-
based Distributed Application Mapping for on-chip 
Communication”, in Proc. of DAC, 2008, pp. 760-765. 

[8]  C. Chou, and R. Marculescu, “Incremental run-time application 
mapping for homogeneous NoCs with multiple voltage levels”, 
in Proc. of the int. Conf. on Hardware/software Codesign and 
system synthesis, pp. 161-166, 2007. 

[9] A. Kumar, L. S. Peh, P. Kundu, and N. K. Jha, “Express virtual 
channels: towards the ideal interconnection fabric”, in Proc. of 
the International Symposium on Computer Architecture (ISCA), 
2007, pp.150-161. 

[10] M. Modarressi, A. Tavakkol, H. Sarbazi-Azad, " Virtual Point-
to-Point Connections for NoCs", in IEEE Transactions on 
Computer-Aided Design for Integrated Circuits and Systems 
(IEEE TCAD), Vol. 29, No. 6, June 2010.  

[11] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, “An SDM-
Based Hybrid Packet-Circuit-Switched On-Chip Network”, in 
Proc. of Design, Automation and Testing in Europe Conference 
(DATE), 2009. 

[12] L. Smit, G. Smit, J. Hurink, H. Broersma, D. Paulusma, and P. 
Wolkotte, “Run-time mapping of applications to a 
heterogeneous reconfigurable tiled system on chip architecture”, 
in Proc. of the IEEE int. Conf. on Field-Programmable 
Technology, pp. 421-424, 2004. 

[13] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for 
dynamic task mapping in NoC-based heterogeneous MPSoCs”, 
in Proc. of the 18th IEEE int. workshop on Rapid System 
Prototyping, pp. 34-40, 2007. 

[14] K. Goossens, J. Dielissen, and A. Radulescu, “The Æthereal 
Network on Chip: Concepts, Architectures, and 
Implementations”, in IEEE Design and Test of Computers, Vol. 
22, No. 5, Sept-Oct 2005, pp. 414-421.  

[15] W. J. Dally, and B. Towles, Principles and practices of 
interconnection networks, Morgan Kaufmann Publishers, 2004. 

[16] A. Kahng, B. Li, L. Peh and K. Samadi, “ORION 2.0: A Fast 
and Accurate NoC Power and Area Model for Early-Stage 
Design Space Exploration“, In Proceedings of Design 
Automation and Test in Europe (DATE), France, 2009.  

[17] Xmulator NoC Simulator, from http:// www.xmulator.org, 2009. 
[18] SPLASH-2, http://www.flash.stanford.edu/apps/SPLASH/. 


