
978-3-9810801-7-9/DATE11/©2011 EDAA

Supporting Non-contiguous Processor Allocation in
Mesh-based CMPs Using Virtual Point-to-point Links

Marjan Asadinia1, Mehdi Modarressi2, Arash Tavakkol2,3, Hamid Sarbazi-Azad2,3
1Department of Computer Engineering, Sharif University of Technology, International Branch, Kish, Iran

2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
3School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Asadinia@kish.sharif.edu, Modarressi@ce.sharif.edu, Arasht@ipm.ir, Azad@sharif.edu

Abstract— In this paper, we propose a processor allocation
mechanism for run-time assignment of a set of communicating
tasks of input applications onto the processing nodes of a Chip
Multiprocessor (CMP), when the arrival order and execution life-
time of the input applications are not known a priori. This
mechanism targets the on-chip communication and aims to
reduce the power and latency of the NoC employed as the
communication infrastructure. In this work, we benefit from the
advantages of non-contiguous processor allocation mechanisms,
by allowing the tasks of the input application mapped onto
disjoint regions (sub-meshes) and then virtually connecting them
by bypassing the router pipeline stages of the inter-region
routers. The experimental results show considerable
improvement over one of the best existing allocation mechanisms.

Keywords-chip multiprocessors; network-on-Chip; processor
allocation; contiguous allocation; non-contiguous allocation;
power consumption; performance.

I. INTRODUCTION

In networks-on-chip (NoCs), the problem of task to node
mapping, which determines on which node (or respective
processing core) each task should be placed at, dramatically
affects network performance characteristics, such as average
inter-core distance and communication flow distributions [1].
These characteristics, in turn, determine power consumption
and average network latency of the system. In [2], it has been
shown that selectively mapping the tasks to NoC nodes results
in a considerable power reduction and performance
improvement, compared to an NoC with randomly mapped
tasks.
 In addition to the design-time mapping schemes,
incremental mapping or processor allocation is another
problem in large CMPs. Processor allocation deals with the
problem of mapping the tasks of a newly arrived application to
unallocated cores at run-time without interfering the execution
of existing applications in the system. In this scenario, the
exact sequence in which different applications arrive in the
system and their lifetimes are unknown a priori.

The existing techniques of processor allocation in
traditional parallel machines are generally divided into two
groups: contiguous and non-contiguous [3]. In contiguous
allocation techniques, the tasks of an application are mapped
onto a set of adjacent network nodes which result in low
communication overhead [4-5]. However, the main problem of

this approach is its low system utilization, since an application
has to wait for a properly sized and shaped contiguous group
of processors, while there may be sufficient number of free
processors in non-contiguous regions [3][6]. Non-contiguous
allocation tries to mitigate this problem by mapping the tasks
on multiple disjoint smaller sub-networks rather than always
waiting until a single sub-network of the requested size being
available.

 Lifting the contiguity condition in non-contiguous
allocation is expected to increase processor utilization. It may,
however, lead to more traffic load and higher communication
delay/power since it is very likely that the tasks of an
application are mapped onto distant regions of the network
and their packets have to travel a longer distance through
different intermediate sub-networks.

Most existing processor allocation methods are proposed
for the traditional parallel machines. Recently, few researchers
have focused on processor allocation in NoC-based CMPs [7-
8]. Among them, the run-time incremental mapping presented
by Chou and Marculescu [8] is more related to our work. They
split the mapping process into two steps: region selection and
application to region mapping. The first step tries to select a
near convex region in such a way that the contiguity of the
remaining free nodes is maximized and subsequent
applications can still select a near convex region. During
region selection, a node that has most of its neighbors utilized
is selected first, as it is very likely to be later isolated.
Moreover, the nodes with less distance to the boundaries of
the current region are more likely to be included. After region
selection procedure, every task-graph vertex (application task)
is assigned to some node in the region. The algorithm, in this
step, aims to minimize the inter-processor communication. It
also tries to meet task deadlines by assigning tasks to a node
with appropriate voltage level.

In this paper, we propose a processor allocation scheme
which aims to benefit from the good resource utilization of
non-contiguous allocation schemes while behaving close to
contiguous allocation schemes. Our method relies on forming
virtual contiguous regions which may be composed of several
non-physical contiguous groups of processors. The NoC then
provides low-power and low-latency communication for the
packets when traveling among different parts of a virtual
region.

978-3-9810801-7-9/DATE11/©2011 EDAA

Our proposed approach adopts a hybrid NoC supporting a
second low-power and low-latency switching method in
addition to packet switching. In such NoCs, we direct
communication among the nodes inside a region (or sub-
network) through packet-switching, as this switching method
benefits from flexibility, scalability and high resource
utilization. The inter-region traffic, however, is handled by the
second switching method to hide the latency of
communication flows between the nodes in disjoint parts.

Investigating several hybrid NoCs with efficient switching
methods, such as EVCs [9], VIPs [10], and hybrid
packet/circuit-switched NoCs [11], we employ the idea
presented in [10] for underlying NoC structure. In [10], virtual
point-to-point (VIP) connections are integrated into a
conventional packet-switched NoC to support high volume
communication flows which can work better for
communications between distant nodes. VIPs can be
constructed in demand between any two NoC nodes at run-
time and involve negligible area overhead.

VIPs give a power and latency close to physical dedicated
point-to-point links [10]. They provide low-power and low-
latency virtual dedicated paths between any two nodes by
bypassing the pipeline of the intermediate routers. In this
design, one virtual channel (VC) of each physical channel is
designated to bypass the router pipeline stages. VIPs provide
connection-oriented communication and, once created, their
paths are stored in the routers along the path. In the VC
assigned to VIPs, the buffer is replaced by a register (1-flit
buffer) which holds the flits arriving on the VC. In addition to
the reduced power and latency, VIPs isolate the inter-region
from the intra-region traffic which allows applying better
traffic management (such as bandwidth allocation and priority
assignment) schemes.

In this paper, we introduce a VIP-enabled NoC architecture
and show how it can be exploited in order to form virtual
regions and allocate them to the new coming applications, in
such a way that the total on-chip power and average packet
latency is minimized. We use a centralized scheme to perform
job mapping [12-13]. Since, most current MPSoCs and CMPs
have a central root or configuration process (or processor) that
initializes, configures, and manages the system [14], we
consider the task of processor allocation is realized by this
processor. Generally, a centralized managing scheme may
suffer from scalability problems, but this scheme can
efficiently manage processor allocation, since the manager is
activated only when a new application arrives at the system; in
a realistic scenario, arrival of new applications and completion
of running applications do not occur frequently.

The rest of the paper is organized as follows. Section 2
introduces the NoC architecture used in this work. We present
the proposed run-time processor allocation algorithm in
Section 3. In Section 4, the proposed algorithm is compared to
a state-of-the-art allocation algorithm in terms of power
consumption and network performance. Finally, Section 5
concludes the paper.

II. NOC ARCHITECTURE

The routers in our design are baseline wormhole-switched
routers which are slightly modified in order to support VIP
connections. In this section, first, we briefly describe the VIPs.
We refer interested readers to [10] for more details on VIPs.
Although the NoC we consider in our work is not restricted to
a specific switching and routing scheme, the NoC router, in
this study, employs a wormhole switching mechanism with
speculative 4-stage pipelined routers [15]. A state-of-the-art
router speculatively performs virtual-channel allocation (VA)
and switch allocation (SA) in parallel resulting in 4-stage
routers, including buffer write (BW), route computation (RC),
switch and virtual-channel allocation (SA+VA), and switch
traversal (ST) stages. In this scheme, the routers speculate that
a waiting packet will succeed in output VC allocation stage.
Non-speculative requests (flits which have already been
allocated a VC) are prioritized over speculative ones, so
performance degradation may be caused by unsuccessful
speculations.

VIPs can be considered a kind of circuit-switching scheme.
However, they do not suffer from resource utilization and
performance degradation (due to the circuit setup time) issues
of the conventional circuit-switching. They can be added to a
packet-switched NoC in order to improve its performance.
Here, in one virtual channel (virtual channel 0) of each
physical channel, the buffer is replaced by a register (1-flit
buffer). These virtual channels are devoted for establishing
VIP connections between any two given nodes. The switch
allocator unit is also slightly modified and each output port
contains a VIP allocator that, for each output port belonging to
a VIP, determines (using a 2-bit register) the input port
connected to this output port along the VIP. There is no need
for arbitration among VIPs, as VIP connections are not
allowed to share the same links (i.e. each router port can be
used by at most one VIP connection).

A VIP for a communication flow is established by
appropriately setting the VIP allocators in each router in such
a way that the VIP registers in each router are connected to
proper output ports and then to the registers in the next router
along the VIP. As a result, at each hop, the VIP data are
forwarded in two stages: crossbar traversal and link traversal,
with VIP registers acting as staging registers. Since the VIP
flits bypass the other router pipeline stages, the power
consumption and delay related to buffer read and write, route
calculation, and arbitrations are removed. Unlike dedicated
point-to-point links, which are physically established between
the communicating nodes of a multi-core chip (based on the
communication pattern of the target application) and are fixed
during the system life-time, the VIP connections are
dynamically reconfigurable and can be established based on
the traffic pattern exhibited by the running application. It is a
critical feature for processor allocation algorithms, as the VIP
connections can be built and torn down when the applications
start and stop execution.

Supporting VIPs in a baseline packet-switched router
involves minor manipulating the baseline router architecture

978-3-9810801-7-9/DATE11/©2011 EDAA

and impose a completely negligible area overhead [10]. VIPs
do not suffer from the resource utilization problems of
TDMA-based circuit-switched NoCs, since NoC cycles (time
slots) are not reserved for the two NoC parts (packet-switched
part and VIPs). Instead, each part uses the links when it has
incoming flits to forward and the flow control and bandwidth
allocation mechanisms developed for them guarantees that
each part is provided with the required bandwidth.

III. VIP-SUPPORTED PROCESSOR ALLOCATION

A. Overview of the Approach

In this section, we describe how to exploit the capabilities
of the NoC described in Section 2 in order to find an
appropriate solution for the processor allocation problem. The
solution should minimize the on-chip communication power
and latency and increase resource utilization by considering all
unallocated processor for placing a new task.
The NoC is assumed to be an m×n mesh with the router
architecture described above. Each input application is
described as a Communication Task Graph (CTG). The CTG
is a directed graph G (V,E), where each viєV represents a task,
and a directed edge ei,jєE characterizes the communication
from vi to vj. The communication volume (bits per second)
corresponding to edge ei,j is denoted by t(ei,j).

Simply stated, for a new input application, our objective is
to map the tasks of the application into different nodes of a
mesh-connected NoC in such a way that the total on-chip
power and latency is minimized. To this end, the algorithm
tries to map the tasks onto a contiguous sub-network.
However, if it is not possible to find a contiguous region with
sufficient number of processors, the tasks are mapped onto
some non-contiguous sub-networks which use VIPs to
communicate with each other.

As mentioned before, the allocation process is conducted
by a root processor and in a centralized manner. The root
process keeps the NoC state, i.e. the location of all existing
applications, the traffic assigned to each NoC link, and the
path of all existing VIP connections. It also keeps the state of
all NoC nodes and recognizes which nodes are free or
allocated. The root process is activated when a new
application arrives at the system or one of the running
applications completes its execution. It conducts allocating
and releasing resources and then updates the NoC state. Since
the root process performs the allocation and de-allocation of
processors, it knows the characteristics of the on-chip traffic
(VIP paths and link loads) and availability of nodes. Thus, it
has all the required NoC state information and do not need to
collect them from the NoC.

B. The Proposed Algorithm

The processor allocation is accomplished in some steps as
follows.

1) Partition the CTG vertices into two sets: Mapped
(containing the already mapped CTG vertices and is initially
empty) and Unmapped (which includes the CTG vertices not

yet mapped and initially contains all CTG vertices). Once a
vertex is mapped, it is moved to the Mapped set.

2) Similarly, partition the NoC nodes into two sets:
Allocated (including the nodes to which a CTG node has been
already assigned) and Unallocated (which includes the free
nodes). Unallocated nodes may be located in some non-
contiguous regions, or free contiguous regions.

3) Find a free region with equal (or the nearest larger)
size to the size (number of vertices) of the application. If there
does not exist a contiguous group of free processors with the
size equal to or larger than the CTG size, find a region with
nearest smaller size. Map the task with the maximum
communication demand onto one of the region nodes with
maximum number of neighbors. The communication demand
of a vertex is defined as the cumulative weight of the incoming
and outgoing edges connected to it.

4) Repeat the following steps until the Unmapped set
becomes empty, i.e. all CTG vertices are mapped:

a) Select the core vi that communicates most with the
Mapped members.

b) Consider the smallest convex region that cover all
Mapped members vj which communicate with vi (ei,jєCTG). We
refer to this convex region as search region (Fig. 2). Examine
all unallocated nodes inside search region for placing vi. For
each selected node x:

 Select the CTG edges between the selected core vi and each
Mapped member vj, which is mapped onto NoC node y, in
order of their communication volumes.

 The communication of each node with its adjacent nodes
(neighboring nodes at distance 1) is handled by the packet-
switched network. However, each node requests for a VIP to
communicate with farther nodes, if the destination task is
not on an adjacent node. Consequently, if the distance
between x and y is 1, consider ei,j for using only packet-
switched network, otherwise in addition to packet-
switching, examine the possibility of constructing a
VIP for the edge (i.e. the existence of sufficient unused
resources) along one of the shortest paths between x and y.
However, if a VIP for such edges could not be found, they
should be handled by the packet-switched network. Map the
core onto the node which minimizes

, , ,() (, ()) (() (1 ()))
v V connected to vj i

i j j i j vip i j pst e dist x M v VIP e W VIP e W


     

(1)

where dist(a,b) is the Manhattan distance between NoC
nodes a and b, M(vj) is the NoC node onto which the CTG
vertex vj is mapped, and t(ei,j) is the communication volume
of edge ei,j. VIP(eij) is defined as

1,
()

0,

if a VIP is reserved for e
VIP e

otherwise

 


(2)

Wps and Wvip are two weights that reflect the cost of
traversing one hop over the VIP and packet-switched

978-3-9810801-7-9/DATE11/©2011 EDAA

network, respectively. Based on evaluating the power
consumption of VIPs and packet-switching using Orion
power library [16], we roughly set Wps and Wvip to 5 and 3,
respectively.
If all nodes inside search region are already allocated or

cannot be used due to bandwidth limitation of links, examine
the nodes within the fixed local neighborhood of d hops of the
region boundary nodes (Fig. 1). For each value of d, all
possible nodes at that neighborhood are examined within this
step. The value of d starts from 1 and the nodes within each
neighborhood are handled in a separate round of this step. d
increases by 1 until a free node is found.

The path should not violate the bandwidth of the network
links (to avoid congestion). More formally, the bandwidth
constraint of each NoC link lk must be satisfied as

,

, () (,)
i j

k
k k

e E

l BW l X i j
 

   (3)

where BW(lk) is the bandwidth of link lk and XK(i,j) and is
obtained by

, ,(), ()
(,)

0,

i j k i jk
t e if l path e

X i j
otherwise

 


 (4)

where path(ei,j) represents the set of links onto which CTG
edge ei,j (with volume t(ei,j)) is mapped either on a VIP or on a
packet-switched part.

After finding a route for all CTG edges, VIP connections
are constructed by setting the VIP allocators, while packet-
switched routes are set up by appropriately setting the routing
table of the routers.
Although the objective of this algorithm is defined to optimize
the power consumption, it is obvious that by mapping the
tasks on nearby nodes and also not allowing the bandwidth of
each link to be violated, the algorithm improves the average
packet latency as well.

The algorithm proposed in this paper is simple and
compared to other related work [7][8], involves moderate
computation to perform mapping. Consequently, according to
the run-time and power analysis in [8], the run-time of our
algorithm is in the order of microseconds and hence can
conduct the processor allocation procedure at real-time.

IV. EVALUATION

A. Simulation Environment

In this section, we evaluate the proposed processor
allocation method. We compare our processor allocation
algorithm against the allocation scheme presented in [8]
referred as incremental mapping. This allocation scheme is
one of the most recent processor allocation approaches shown
to have good performance with respect to other existing
methods [8]. It works on NoCs with several voltage levels, but
we set the voltage of all nodes to the same value. It works on a

Figure 1. The shaded area represents search region for a new task which

communicates with the tasks placed on the nodes marked by X. The black
nodes are the nodes within the fixed local neighborhood of 1 hop of the region

boundaries.

mesh NoC with 4-stage speculative pipelined routers. The
packet-switched part of our NoCs uses the same router
architecture. Both allocation schemes are implemented in
XMulator [17], an event driven flit level NoC simulator coded
in C++. The simulator is augmented by Orion power library in
order to evaluate the power consumption of the NoCs under
the considered allocation strategies. The power results
reported by Orion are based on a 64-bit NoC implemented in
65nm technology and the working frequency of the NoC is set
to 2 GHz.

We use SPLASH-2 [18] traffic traces to evaluate our
method. The traces are collected for different application
sizes. The size varies from 3×3 to 7×7. The NoC size for this
experiment is 10×10. We construct the communication task-
graph of each application by profiling the inter-node
communications in advance.

B. Experimental Results

In the first scenario, we assume that all the applications run on
the system are the same, but with different sizes. There are
two packet sizes: 3 and 5 flits corresponding to the request and
reply packets and the NoC buffers are 8-flit deep. The NoC
with the incremental mapping uses 2 virtual channels per
physical channel. Our NoC replaces one of the virtual
channels with 1-flit VIP buffers and uses one virtual channel
and one VIP latch per port.

In these experiments, we generate a random application
size between 3×3 and 7×7 tasks. The application lifetime, i.e.
the number of cycles it is running on the system is also
selected randomly between 150000 and 200000 cycles. If
there is sufficient number of free nodes, the application is
mapped into the NoC and this procedure continues with a new
application. Otherwise, the application waits until a running
application is finished and the NoC has enough nodes to host
it. We refer to the rate of application acceptance obtained by
this method as λfull.
Fig. 2.a displays the average packet latencies given by the
VIP-based and the incremental mapping algorithms for
different SPLASH programs where the applications with
random sizes enter the system with rate λfull during 10 million
cycles of simulation. Both networks work under the same
input scenario. As Fig. 2.a shows, the proposed method
outperforms the other considered method by up to 30% (26%
on average) across all of the benchmarks.

The energy per flit consumed by the networks is depicted
in Fig. 2.b and shows that following the same trend as the
latency, our method gives up to 33% (29% on average)
reduction in energy consumptions, compared to the other

978-3-9810801-7-9/DATE11/©2011 EDAA

0

5

10

15

20

25

30

35

40

45

V
IP

In
c.

M
ap
pi
ng

V
IP

In
c.

M
ap
p
in
g

V
IP

In
c.

M
ap
p
in
g

V
IP

In
c.

M
ap
p
in
g

V
IP

In
c.

M
ap
pi
ng V
IP

In
c.

M
ap
pi
ng

V
IP

In
c.

M
ap
pi
ng V
IP

In
c.

M
ap
pi
ng

fft raytarce water‐sp water‐nsq barnes radix lu ocean

A
ve
ra
ge
 p
ac
ke
t
la
te
n
cy

 (a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VIP Inc.
Mapping

VIP Inc.
Mapping

VIP Inc.
Mapping

VIP Inc.
Mapping

VIP Inc.
Mapping

VIP Inc.
Mapping

VIP Inc.
Mapping

VIP Inc.
Mapping

En
e
rg
y
p
e
r
fl
it
 (n
J)

 (b)

Figure 2. The average network latency (a) and energy per flit (b) of the
proposed processor allocation and the incremental mapping.

considered allocation algorithm. The obtained improvements
are mainly due to the fact that the VIPs forward a significant
portion of the inter sub-network traffic over short-cut paths,
thereby the power-hungry buffering and time-consuming
allocation operations are removed.

We then consider another scenario in which the NoC
accepts a combination of the SPLASH applications. In this
scenario, in addition to the application size and life-time, the
application type is also selected based on a uniform
distribution.

Fig. 3 shows the latency and energy consumption of the
two NoCs along the time. In these figures, each data point
stands for the average energy per flit and latency of the
network in a 2.5 million cycle time intervals.

As the Fig. 3 shows, our method always outperforms the
other considered processor allocation method and decreases
the energy consumption. When some old applications leave
the system, the free processors form scattered and non-
contiguous regions. In this case, the capability of the VIPs in
virtually connecting these regions is used to optimize the
power and performance of communication.

In these experiments, when larger applications arrive at the
system, the improvement obtained by our proposed
methodology increases. This is due to the fact that large
applications are more likely to be mapped onto several non-
contiguous regions and benefit more from the VIPs.

Table 1 shows the minimum, maximum, and average VIP
length and the minimum, maximum and average percentage of
the traffic handled by VIPs during the system life-time for the
above scenario (reported in Fig. 3) across all data points. As
mentioned before, VIPs absorb a significant portion of the on-
chip traffic and handle it with lower power consumption and
latency.

To study the impact of the buffer depth on the obtained
power and performance improvement, we repeat the
experiments with the previous parameters, but with a buffer
depth varying from 2 to 40 flits. Fig. 4 displays the results

under a random combination of SPLASH applications with the
arrival rate of λfull.

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

A
ve
ra
ge
 M

es
sa
ge
 D
e
la
y

Clock Cycle (X50,000)

Proposed Method

Incremental Mapping

 (a)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30 35 40 45

En
e
rg
y/
Fl
it
(n
J)

Clock Cycle (X50,000)

Proposed Method

Incremental Mapping

 (b)
Figure 3. The average network latency and energy per flit of the proposed

processor allocation and the incremental mapping.

Table I. The traffic of the network handled by VIPs and the length of the formed VIPs

 Max. Min. Average
VIP Traffic Coverage (%) 49% 22% 34%

VIP Length (Hop) 8 3 4.84

As the fig. 4 shows, our NoC provides lower latency and

energy values for all buffer sizes. However, as the buffer size
is increased, the obtained energy improvement increases.
When the buffer depth is increased, the performance is
improved as a result of the increased NoC capacity to accept
more traffic. However, it also increases energy consumption,
as larger buffer arrays consume more power. In our NoC, a
portion of the traffic is handled by VIPs and does not pass
through buffers, so the negative effect of the increased buffer
size on the energy consumption is moderated.

26

27

28

29

30

31

32

33

V
IP

In
c.

M
a
pp
in
g

V
IP

In
c.

M
a
pp
in
g

V
IP

In
c.

M
a
pp
in
g

V
IP

In
c.

M
a
pp
in
g

V
IP

In
c.

M
a
pp
in
g

V
IP

In
c.

M
a
pp
in
g

40 32 24 16 8 2

A
ve
ra
ge
 p
ac
ke
t
la
te
n
cy

Buffer size (a)

0.0

0.2

0.4

0.6

0.8

V
IP

In
c.

M
a
p
p
in
g

V
IP

In
c.

M
a
p
p
in
g

V
IP

In
c.

M
a
p
p
in
g

V
IP

In
c.

M
a
p
p
in
g

V
IP

In
c.

M
a
p
p
in
g

V
IP

In
c.

M
a
p
p
in
g

40 32 24 16 8 2

En
e
rg
y
p
e
r
fl
it
 (n
J)

Buffer size
 (b)

Figure 4. The average network latency (a) and energy per flit (b) of the

proposed processor allocation and the incremental mapping for different
buffer sizes.

978-3-9810801-7-9/DATE11/©2011 EDAA

10

15

20

25

30

35

VIP Inc. Mapping VIP Inc. Mapping

λ/2 λ/10

A
ve
ra
ge
 p
ac
ke
t
la
te
n
cy

Application arrival rate

0.3

0.4

0.4

0.5

0.5

0.6

0.6

VIP Inc. Mapping VIP Inc. Mapping

λ/2 λ/10

En
e
rg
y
p
e
r
fl
it
 (n
J)

Application arrival rate
(a) (b)

Figure 5. The average network latency (a) and energy per flit (b) of the
proposed processor allocation and the incremental mapping for two different

arrival rates.

We have also studied the effect of the average arrival rate
of the application on the obtained performance improvement.
For this purpose, we consider the random combination of
SPLASH programs and calculate λfull. Then, we set the arrival
rate of the applications to λfull/10 and λfull/2 and repeat the
experiments.
That is the next application to be run, its size, and lifetime are
generated like the previous experiments, but the arrival rate is
determined based on a Poisson distribution with the mentioned
rates. Fig. 5 outlined the performance and power
improvements given by our algorithm over the incremental
mapping algorithm for these scenarios. The figure indicates
that for low arrival rates, the energy consumption and latency
difference of the two networks is not big.

At lower arrival rates, the network has more number of
free processors on average, and it is more likely for both
algorithms to find a contiguous group of free processors to
allocate to a new application and thus the advantages of VIPs
in forming virtual contiguous regions is not fully exploited.

V. CONCLUSION

This paper targeted the well-known processor allocation
problem in NoC-based CMPs. Processor allocation or
incremental application mapping deals with run-time
assignment of a set of communicating tasks of an input
application onto unallocated nodes of a CMP when the arrival
order and execution lifetime of the input applications are not
known a priori. Focusing on on-chip communication, we used
a hybrid switched NoC in which packet-switching and virtual
point-to-point connections are integrated into the same NoC.
The tasks of a single application are mapped onto a virtual
region which may consist of several non-contiguous groups of
processors. The virtual point-to-point links guarantee low-
latency and low-power communication among different parts
of a virtual region, while packet switching part handles the
traffic inside each contiguous region. This mechanism benefits
from the advantages of both traditional contiguous and non-
contiguous processor allocations mechanisms. The
experimental results showed considerable improvement over
one of the best existing allocation mechanisms.

Integrating task migration into our algorithm in order to
achieve better mappings can be considered as a future work.
Designing a light-weight parallel architecture for
implementing this algorithm in hardware is another work in
this line. The designed logic can be integrated onto the CMP
and boost the performance.

ACKNOWLEDGMENT

The research of H. Sarbazi-Azad and M. Modarressi was
supported in part by Iran Telecommunication Research Center
(grant no. t/ ١١٣١۴/۵٠٠).

REFERENCES
[1] A. Jantsch, and H. Tenhunen, Networks on Chip, Kluwer

Academic Publishers, 2003.
[2] J. Hu, and R. Marculescu, “Energy- and Performance-aware

Mapping for Regular NoC Architectures”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 24, No. 1, 2005, pp. 551-562.

[3] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. M.
Mackenzie, “Non-contiguous Processor Allocation Strategy for
2D Mesh Connected Multicomputers based on Sub-meshes
Available for Allocation”, in Proc. of International Conference
on Parallel and Distributed Systems (ICPADS'06), 2006.

[4] K. Li and K.-H. Cheng, “A Two-Dimensional Buddy System for
Dynamic Resource Allocation in a Partitionable Mesh
Connected System”, Journal of Parallel and Distributed
Computing, Vol. 12, No. 1, pp. 79-83, 1991.

[5] B. S. Yoo, C. R. Das, “A Fast and Efficient Processor Allocation
Scheme for Mesh-Connected Multicomputers”, IEEE
Transactions on Parallel & Distributed Systems, Vol. 51, No. 1,
pp. 46-60, 2002.

[6] I. Ismail and J. Davis, “Program-based static allocation policies
for highly parallel computers”, in Proc.s of the IPCCC 95, pp.
61-68, 1995.

[7] M. Faruque, R. Krist, and J. Henkel, “ADAM: Run-time Agent-
based Distributed Application Mapping for on-chip
Communication”, in Proc. of DAC, 2008, pp. 760-765.

[8] C. Chou, and R. Marculescu, “Incremental run-time application
mapping for homogeneous NoCs with multiple voltage levels”,
in Proc. of the int. Conf. on Hardware/software Codesign and
system synthesis, pp. 161-166, 2007.

[9] A. Kumar, L. S. Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: towards the ideal interconnection fabric”, in Proc. of
the International Symposium on Computer Architecture (ISCA),
2007, pp.150-161.

[10] M. Modarressi, A. Tavakkol, H. Sarbazi-Azad, " Virtual Point-
to-Point Connections for NoCs", in IEEE Transactions on
Computer-Aided Design for Integrated Circuits and Systems
(IEEE TCAD), Vol. 29, No. 6, June 2010.

[11] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, “An SDM-
Based Hybrid Packet-Circuit-Switched On-Chip Network”, in
Proc. of Design, Automation and Testing in Europe Conference
(DATE), 2009.

[12] L. Smit, G. Smit, J. Hurink, H. Broersma, D. Paulusma, and P.
Wolkotte, “Run-time mapping of applications to a
heterogeneous reconfigurable tiled system on chip architecture”,
in Proc. of the IEEE int. Conf. on Field-Programmable
Technology, pp. 421-424, 2004.

[13] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for
dynamic task mapping in NoC-based heterogeneous MPSoCs”,
in Proc. of the 18th IEEE int. workshop on Rapid System
Prototyping, pp. 34-40, 2007.

[14] K. Goossens, J. Dielissen, and A. Radulescu, “The Æthereal
Network on Chip: Concepts, Architectures, and
Implementations”, in IEEE Design and Test of Computers, Vol.
22, No. 5, Sept-Oct 2005, pp. 414-421.

[15] W. J. Dally, and B. Towles, Principles and practices of
interconnection networks, Morgan Kaufmann Publishers, 2004.

[16] A. Kahng, B. Li, L. Peh and K. Samadi, “ORION 2.0: A Fast
and Accurate NoC Power and Area Model for Early-Stage
Design Space Exploration“, In Proceedings of Design
Automation and Test in Europe (DATE), France, 2009.

[17] Xmulator NoC Simulator, from http:// www.xmulator.org, 2009.
[18] SPLASH-2, http://www.flash.stanford.edu/apps/SPLASH/.

