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Abstract— Designing appropriate buffer sizes for routers
within Network-on-Chip (NoC) so as to minimize the power
while preserving the required performance in the presence of
self-similar traffic has been considered a challenging problem
in the literature. A few analytical studies carried out in NoC
modeling have been adopted assumptions such as exponentially-
distributed packet inter-arrivals, and conclusions reached under
such assumptions may be inappropriate in the presence of
self-similar traffic. Through mathematical analysis this paper
predicts the optimal buffer size under self-similar traffic using
Discrete Poisson Pareto Burst Process (DPPBP). The validity
of the mathematical expressions is demonstrated through sim-
ulation experiments.

I. INTRODUCTION

Recent measurements of on-chip traffic [15], [16], [21]
have convincingly shown that scale-invariant burstiness (i.e.
self-similarity [12]) is being recognized in both pair-wised
single application [21] and over entire network [16].

As a pioneer study Varatkar and Marculescu [21] provide
evidence about the presence of self-similar phenomena at the
coarse-grain level in on-chip traffic generated by multimedia
applications and have shown how self-similar processes can
be used effectively to model the bursty traffic behavior at
chip-level. The authors in [15], [16] extended the results of
[21] to cycle-accurate level and proposed a stochastic traffic
generator being aware that

1) On-chip traffic is non-stationary
2) On-chip traffic flows contain long range dependent

behavior that must be taken into account when syn-
thesizing traffic.

Recently, the authors in [18] propose an empirically-
derived network on-chip traffic model for homogeneous
NoCs. Their comprehensive model captures the spatio-
temporal characteristics of NoC traffic accurately with less
than 5 percent error when compared to actual NoC appli-
cation traces gathered from full system simulations of three
different chip platforms. namely TRIPS CMP [14], RAW
CMP [19] and cache coherent CMP comprises 16 tiles each
with one processor, and some memory and caches [18]. In
all the above-mentioned three architectures injected network
traffic possesses self-similar temporal properties [12].

Few studies target performance evaluation of multi-core
and multiprocessor on-chip through mathematical analysis
[5], [6], [11]. A delay model of wormhole switching has
been proposed in [5]. The model assumes that routers have
single flit buffers and packet size dominates the overall

latency. Recently, a mathematical performance methodology
for wormhole-switched NoCs based on a novel router model
has been presented in [11]. Using the router model the
average number of packets at each buffer in the network as
a function of the traffic arrival process has been computed.
In another study [6] the buffer sizing problem in packet
switched networks has been investigated and a performance
model based on queuing theory has been obtained. However,
this model considers only exponential packet size.

Due to the strong impacts of LRD traffic on the buffer
size [21], the problem of optimal buffer sizing becomes an
issue of critical importance under self-similar traffic.

This paper extends the work presented in [6] and in-
vestigates the optimal buffer size of NoCs’ routers under
self-similar traffic using DPPBP and through mathematical
analysis we formulate the buffer overflow probability and
lower and upper bound of the buffer has been investigated.
The validity of the obtained expressions is demonstrated by
comparing results predicted by the analytical model against
those attained through simulation experiments.

The rest of the paper is organized as follows. Section II,
reviews the preliminaries and main concepts related to LRD
and self-similarity and then explores DPPBP and presents the
analytical method for deriving the upper and lower bound of
the buffer size in NoCs’ routers. Through simulation study,
we validate the effectiveness and accuracy of the proposed
expressions in Section III. Finally, Section IV summarizes
the main conclusions of the paper.

II. PERFORMANCE ANALYSIS

This section describes first the self-similar process fol-
lowed by the node structure, and then the assumptions used
in the analysis and presents the analytical model. Let X =
{Xk, k = 1, 2, 3, . . .} be a stationary stochastic sequence and
let X(m) be the corresponding aggregated sequence (with
aggregation level m), obtained by averaging the original
sequence X over non-overlapping blocks of size m:

x
(m)
k =

1
m

km∑
i=(k−1)m+1

xi; k = 1, 2, 3, . . .

The stationary sequence X is called exactly self-similar, with
self-similarity parameter H (the Hurst parameter [12]), if
for all m, its finite dimensional distributions are identical to



those of the aggregated sequence m1−HX(m), that is,

x
.= m1−HX(m)

where .= indicates identical finite-dimensional distributions.
The sequence X is called asymptotically self-similar if the
previous condition holds as m→∞. Another less strict def-
inition which involves the second-order moments exclusively
is reported in the literature (see [17] for details). It has been
shown that a second-order stationary process whose auto-
correlation function decays hyperbolically is asymptotically
second-order self-similar [20]. For this reason, although LRD
and self-similarity are not equivalent concepts, they are often
utilized without distinction and in this paper we use these
terms interchangeably.

A. 2D mesh and its node structure

An m × n 2D mesh NoC consists of a set of IPs V =
{(x, y) | 1 ≤ x ≤ m, 1 ≤ y ≤ n}, where each IP (x1, y1) is
connected to its neighbors (x1±1, y1) and (x1, y1±1), if they
exist. The PE contains a processor and some local memory.
The router has at most 5 input and 5 output channels. A
node is connected to its neighboring nodes through 4 input
and 4 output channels. These channels are labeled as East,
North, West and South channels, respectively. The remaining
channel is labeled as Local channel and used by the PE to
inject/eject packets to/from the NoC. The router contains an
address decoder, a channel controller and some flit buffers for
each incoming channel that stores the input packets before
delivering them to the output channels. Each such input
buffer in the router can have a different depth. This can be
easily implemented, for instance, at the instantiation phase
through a parameterized design methodology. The FCFS
input buffer is regulated through a back-pressure mechanism.
Under this scheme, a packet is held in the buffer until the
downstream router has enough empty space available (in the
corresponding input buffer) such that network will not drop
any packet in transit.

B. Assumptions

The model is based on the assumptions that have been
used in [6].

a. A 2D mesh NoC is organized in m rows and n columns
with Deterministic routing [18] and Virtual-cut-through
switching is also being employed. The IPs are labeled
as (i, j) which corresponds to the position of the IP in
a row and a column.

b. The packet size is fixed and is equal to arbitrary number
of flits so that each flit requires one-cycle transmission
time across a physical channel.

c. The buffer size is measured in multiples of packet size.
d. The size of any input buffer must be m×R, where m

is a positive integer and R is the size of packets in flits.
e. The size of the local input buffer (the input channel

which accepts packets from the router’s local PE) is
infinite. This is a reasonable assumption since the PE
can also use its local memory (which is usually much
larger compared to router buffers) to store input packets.

Due to this assumption, the size of local input buffer will
not be considered anymore in the allocation process.
Moreover, packets are transferred to the local PE as
soon as they arrive at their destinations.

Furthermore, we use the following assumption instead of
exponentially-distributed packet size in [6] to capture the
effects of LRD behavior.

g. IPs generate traffic independently of each other such
that the number of flows arrived at time t for each IPx,y ,
is distributed as a Poisson process with parameter ax,y ,
and the duration of each flow follows Discrete Pareto
Process with parameters c0 (location parameter) and
α (shape parameter). The obtained combined process
is known as Discrete Poisson Pareto Burst Process
(DPPBP) (details will be explained in Section II-C.1).

C. Outline of the model

Due to fixed size packet length and deterministic routing
the order of packets are preserved through the network and
thus, in the analysis, a packet can be treated as a basic/atomic
unit since it will always be transmitted or buffered as an
indivisible entity. In the absence of packet contention, the
service time of each packet in a router (measured as the time
span from the moment when the packet header arrives at the
input channel of the router to the time it takes to receive
it by the input channel of the downstream router) is fixed
and can be accurately calculated. More precisely, the service
time per packet (T ) in a router without contention can be
calculated as follows:

T = Tdec + Tr + Txarb + Txb + Tl (1)

In Eq. (1), Tdec, Tr and Txarb are the delays of the address
decoding, routing path selection and crossbar arbitration,
respectively. These parameters are usually independent of
the packet size. On the other hand, Txb and Tl model the
delays in the crossbar and link traversal, respectively; they
are usually proportional to the packet size.

1) Traffic Modeling: To model self-similarity, we use
the model originally developed in [20] based on DPPBP.
Consider IPx,y to be an IP located in position (x, y) and let
Yx,y be the stream of packets generated by IPx,y . The packets
are assigned to flows (or sessions) and thus the traffic is the
aggregation of packets generated by flows. The flows are
enumerated by s ∈ Z+. Throughout this paper enumeration,
means that we assign a number s ∈ Z to each element of a
given set S, such that the number s = 0 is assigned to the
first element and the number s = 1 is assigned to the second
element and so on. Each IPx,y may generate several flows s,
contributing to the total traffic of NoC. Each flow s of IPx,y
starts to generate its packets at time denoted by ωx,ys .

By the above enumeration, the time of generating flow s
is less than or equal to the time of generating flow s + 1
on the same IP (i.e. ωx,ys ≤ ωx,ys+1). The moment ωx,ys is
called the time at which flow s arrives. The flow s generates
Rx,y at each time ωx,ys + i− 1, i ∈ {1, . . . , τx,ys }, in its “on
interval” (i.e. ωx,ys , . . . , ωx,ys +τx,ys −1). The number Rx,y is
called the flow rate for IPx,y and is a finite positive integer;



Rx,y ∈ Z+. The time interval ωx,ys , . . . , ωx,ys + τx,ys − 1 is
called the active (on) period of flow s of IPx,y and τs ∈ Z
is called the length of the flow s active period. Before time
ωx,ys and after time ωx,ys + τx,ys − 1, the flow s does not
generate any packets. At any time t ∈ Z, more than one
flow arrival can occur. Let ξx,yt , denote the number of flows
arrived at t, i.e. ξt ∈ Z+ is the number of flows started their
active periods at t. Thus,

Yx,y(t) =
∑
s∈Z+

θx,ys (t− ωx,ys + 1); t ∈ Z+ (2)

where θx,ys (i) = Rx,y for i ∈ {1, . . . , τx,ys } and 0 otherwise.
This means that Yx,y(t) is the total number of packets
generated by all active flows at time t. It is assumed that
the random variables τx,ys , s ∈ Z+ are i.i.d.; the numbers
of flow arrivals, ξx,yt , t ∈ Z, are i.i.d. random variables
with ax,y

.= E(ξx,yt ) < ∞; the random variables τx,ys are
mutually independent of ξx,yt and ωx,ys .

Moreover, we assume that all IPs generate the traffic
independently, i.e. all random variables ξx,yt , ωx,ys and τx,yt

are mutually independent for all IPx,y . Furthermore, it’s
assumed that all IPs have the same flow rate R and have
identically distributed random variables τx,ys . Let τ be a
generic symbol for all τx,ys and ξx,y be a generic symbol
for all ξx,yt , t ∈ Z. When τ in Yx,y is Pareto distributed with
parameter α and ξx,y is Poissonian with parameter ax,y we
obtain the following process known as DPPBP:

Pr{τ = l} = c0l
−α−1, 0 < α < 2, l ∈ N (3)

where

c0
.=

( ∞∑
l=1

l−α−1

)−1

(4)

and

Pr{ξx,y = k} = e−ax,y
akx,y
k!

, 0 < ax,y <∞, k ∈ Z+.

(5)
The DPPBP with parameters R, α and ax,y is stationary

(in narrow sense) and ergodic [4], [12].
The authors in [20] has shown that a discrete-time process

Yx,y(t) described in Eq. (2) is second-order asymptotically
self-similar with parameter H = 1−β/2, 0 < β < 1, if ξx,y

is a Poisson random variable and τ is distributed as

Pr{τ = l} = L(l)l−(β+2), l→∞ (6)

where L(l) is a slowly varying function at infinity.
If τ in Eq. (6), is a Pareto random variable, then L(l)

reduces to a constant which is a slow varying function at
infinity and thus the conditions of second-order asymptoti-
cally self-similarity is satisfied for a DPPBP. Thus the traffic
generated by IPx,y is a LRD process with Hurst parameter
H = 3− α/2.

2) Y/D/C/h Queueing System: Consider a discrete-time
system with a finite buffer and a channel that corresponds
to waiting line and server in a finite buffer queueing system,
respectively. In this queueing system, the time is divided
into slots with the duration of one cycle per slot. Thus, a

typical slot, namely slot t spans the time interval [t, t + 1).
Let Y = (. . . , Y−1, Y0, Y1, . . .), where Yt is the number of
packets arrived at time t ∈ Z, be a renewal stochastic process
representing the input arrival traffic at an input channel. The
buffer has a finite size h.

The output channel can transmit (serve) no more than
C packets which can be taken out of the packets waiting
in the buffer and Yt newly arrived packets. The considered
queueing system is denoted as Y/D/C/h, where Y denotes
the input traffic Yt, D stands for the deterministic service
time equal to 1 slot time, C is the number of servers and h is
the buffer size. Unfortunately, the buffer size distribution for
Yt following the DPPBP has yet to be discovered. However,
the boundaries of buffer overflow probability in steady state
have been developed in [20].

Let random variable At be the buffer overflow indicator,
i.e. At is 1 when the buffer is full at the time t and is 0
otherwise. We define

Pover = lim
t→∞

(Pr{At = 1})

In [20] the lower and upper bounds of Pover, for the DPPBP
input traffic with parameters R, α and ξ is given by:
Upper bound:

Pover ≤ c̄h(1−α)k, h→∞, k = 1 + bC
R
−aE(τ)c (7)

where

c̄ =
1
k!

(
ac0(α− 1)−α

(
C

R
+ 2
)α−1

Rα−1

)k
(8)

Lower bound:

Pover ≥ ch(1−α)k, h→∞, k = 1 + bC
R
−aE(τ)c (9)

where

c =
ck0R

(α−1)k

α(α− 1)k
(
E(τ) + (1− eρ/E(τ))−1 − 1

) (10)

where a = E(ξ) and c0 = Pr{τ = 1}. Moreover, in Eq.
(10), ρ = aE(τ) if aE(τ) ≤ 1, otherwise ρ is any number
satisfying

0 ≤ ρ <
{

1 + δ −∆ ∆ ≥ δ
δ −∆ ∆ > δ

(11)

in which

δ = aE(τ)− baE(τ)c

∆ =
C

R
− bC

R
c (12)

We use these bounds for overflow to calculate the bounds
of optimal buffer size under LRD traffic. It is noteworthy
to mention that the Pover probability does not decay in
accordance with the exponential law, which is usual in
teletraffic theory, but according to the power law of h.



3) Buffer Sizing Problem Definition: We would like to
find the buffer depth assignment for each input channel,
across all of the on-chip routers, so as to minimize the aver-
age end-to-end packet delay. The inputs of the problem are
the communication probability between each communicating
IP pair and the total budget of buffering resources that the
designer is allowed to use. Thus the problem can formulated
as:

Given: Total available buffering space B in NoC Ap-
plication communication characteristics ax,y, α and dx

′,y′

x,y

Architecture specific packet servicing time S and routing
function R.

Determine: Buffer size for each input channel lx,y,dir
which minimizes the average packet latency L, which is
formally expressed as below:

minL (13)

subject to: ∑
x

∑
y

∑
dir

lx,y,dir ≤ B (14)

over: lx,y,dir.

We use the overflow probability boundaries presented
in the above section to predict the performance bottleneck
channel in the following section.

4) Solving the Buffer Sizing Problem: As mentioned in
[6] the buffer allocation algorithm starts with the minimum
buffer size configuration (i.e. one packet) and iteratively
increases the buffer size of the bottleneck channels until
the specified value of the buffer budget is reached. The
main challenging problem which makes the problem more
complicated than [6] is devising a technique to detect the
performance bottleneck among the different router channels,
which highly affects the behavior of overflow probability in
terms of the router buffer size due to high variability of self-
similar traffic.

5) Router/channel analytical models: Given the current
buffer size configuration, the algorithm tries to identify the
channels where adding extra buffering space leads to the
maximum improvement in performance. A set of nonlinear
equations derived from Y/D/C/H queuing model presented
in the previous section is used to analyze the current buffer
size configuration and then to detect the performance bottle-
necks in the router channels. The basic idea is that, given the
system configuration (which includes the traffic pattern and
the size of each FIFO in the current solution), the algorithm
detects the FIFO which has the highest probability to be
in the full state. The channel which owns this particular
FIFO becomes the real performance bottleneck in the current
configuration and thus its size should be increased. Now, we
calculate Pover for all input channel Cx,y,dir of all routers
Rx,y and find the bottleneck. Each router channel Cx,y,dir
is modeled as a finite queue of length lx,y,dir, with the input
traffic Yx,y,dir, and the service rate µx,y,dir. To derive the
overflow probability, the traffic arrival process and the mean
service time at a channel have to be determined first. The

mean traffic rate is calculated as follows. The total arrival,
Yx,y,dir, at channel Cx,y,dir is the sum of all flows in NoC
traversing this channel and is given by:

Yx,y,dir =
∑
i,j

∑
i′,j′

Y i
′,j′

i,j R(i, j, i′, j′, x, y, dir) (15)

In the above equation, Y i
′,j′

i,j denotes the fraction of the traffic
of source (i, j) to destination (i′, j′). The routing function
R(i, j, i′, j′, x, y, dir) determines the traffic traversing from
source (i, j) to destination (i′, j′), which is 1 if the routing
path passes through Cx,y,dir and is 0 otherwise. The follow-
ing two theorems known as splitting and superposition are
constructive in calculating Yx,y,dir.

Theorem 1: Let Y be the stream of packets generated
by source s. The destinations of packets are distributed
on other nodes such that the packets pass through link l1
with probability p and through other links with probability
q = 1 − p. Let Y1 be the fraction of Y passing through l1.
If Y is a DPPBP process with parameters R, α and a, Then
Y1 is also a DPPBP with parameters R,α and pa.

Proof: The proof is omitted due to space limit. We
refer the interested reader to [7].

Theorem 2: Let Yi, i = 1, 2, . . . be a DPPBP process
with parameters R,α and ai and Y be the supper-position
of all Yis: Y =

∑N
i=1 Yi. Then Y is a DPPBP process with

parameters R,α and a =
∑N
i=1 ai.

Proof: The proof is omitted due to space limit. We
refer the interested reader to [7].

For fixed i, j, i′, j′, since Yi,j is DPPBP, it follows from
Theorem 1 that Y i

′,j′

i,j is also a DPPBP with parameters R,α
and ai,jd

i′,j′

i,j . Moreover, Eq. (15) can be rewritten as:

Yx,y,dir =
∑

(i,j,i′,j′)∈SDx,y,dir

Y i
′,j′

i,j (16)

where SDx,y,dir is the set of all source-destination pairs in
NoC, whose traffic crossing the channel Cx,y,dir. In other
words, SDx,y,dir = {(i, j, i′, j′) | R(i, j, i′, j′) = 1}. Again,
by virtue of Theorem 2 when all Y i

′,j′

i,j follow DPPBP,
their superposition Yx,y,dir is also a DPPBP process with
parameters R,α and ax,y,dir, where

ax,y,dir =
∑

(i,j,i′,j′)∈SDx,y,dir

ai,jd
i′,j′

i,j

=
∑
i,j

∑
i′,j′

ai,jd
i′,j′

i,j R(i, j, i′, j′, x, y, dir) (17)

Considering Y/D/C/h queueing model described in the
previous section and using Eq. (7) and Eq. (9), buffer
overflow probability Px,y,dir can be written as

cx,y,dirl
(1−α)kx,y,dir

x,y,dir ≤ Px,y,dir ≤ c̄x,y,dirl
(1−α)kx,y,dir

x,y,dir

(18)



where

kx,y,dir = 1 + bµx,y,dir
R

− ax,y,dirE(τ)c (19)

and µx,y,dir is the service rate for channel Cx,y,dir in the
presence of contention, cx,y,dir and c̄x,y,dir are the constants
defined in Eq. (10) and Eq. (8) upon substituting a,C, h and
k by ax,y,dir, µx,y,dir, lx,y,dir and kx,y,dir, respectively.

Now let us calculate µx,y,dir which is not trivial, as it
depends not only on the router’s service delay, but also on
probabilities of a packet being routed to each downstream
channel and whether or not the downstream channels are full.
For instance, if the packet is to be delivered eastward and
Cx+1,y,W is full, then the packet has to wait in Cx,y,N . Using
the method presented in [6], we can write the following
expression for service rate µx,y,dir at a channel:

µx,y,dir = RE(τ)ax,y,dir

+
1

1
1/T−RE(τ)ax,y,dir

+ 1
µ̄x,y,dir−RE(τ)ax,y,dir

where T is given by Eq. (1) and

µ̄x,y,dir =
∑
dir′

µ̄dir
′

x,y,dirP
dir′

x,y,dir (20)

and P dir
′

x,y,dir is the probability that an incoming packet from
channel Cx,y,dir leaves the router using direction dir′. As
discussed in [6], this parameter is predetermined. Moreover,
µ̄dir

′

x,y,dir is the service rate due to contention corresponding
to the traffic originated by Cx,y,dir and passing through the
router (x, y) to the outgoing direction dir′ and is a function
of the transmission rate of input and output channels and
buffer overflow probability of the neighboring router. For
example service rate for East channel can be written as

µ̄Ex,y,N =
1

Px+1,y,W
− ax+1,y,W + PEx,y,Nax,y,N (21)

The service rate of the other directions follows the same rule.
The set of the above non-linear equations for all routers can
be solved iteratively to obtain the buffer overflow probability
for all nodes and all directions which finally determine the
bottleneck link.

III. EXPERIMENTAL RESULTS

Numerous validation experiments have been performed
for several combinations of network size, packet size, and
different self-similar input traffic parameters. However, for
the sake of specific illustration, the following results are
only presented. Fig. 1 presents the buffer overflow prob-
ability against buffer size using the Markovian and upper
and lower bound self-similar queueing system denoted by
M/M/1/h, Y/D/C/h upper bound and Y/D/C/h lower
bound, respectively. The figure shows that the analytical
predicted boundaries enclose the simulation data very well.
The obtained accuracy under the proposed method is bellow
%20 which is much better than %35 accuracy.

Fig. 2 depicts buffer overflow probabilities results pro-
vided by simulator and the upper bound predicted by analyt-
ical model against the buffer size. Two Hurst parameters,
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Fig. 1. Log-Log Plot of Buffer Overflow Probability vs. Buffer Size for
Markovian and Upper Bound and Lower Bound of Bursty Queueing Systems
and Simulation Results

namely H = 0.6 and H = 0.8 which is reported in
measurements study [11] and are typical in other studies,
are considered over multiple time scales.

Having validated the analytical model, let us assess the
impact of self-similarity on NoC. Figures divulge that self-
similarity has a significant effect on router buffer size
especially in NoCs with scarce resources and renders the
developed models of Poissonian traffic of less value for MP-
SoCs targeting multimedia applications. Fig. 3 demonstrates
that increasing channel service rate reduces self-similarity
degree and thus has a higher impact than increasing the
router buffer size. The lower bound has not been illustrated
in Fig. 2 and Fig. 3, since it has very small value and the
simulation results were higher than this threshold for all the
implemented experiments.

Counterintuitive, our experiments show that in small
meshes the IPs at the borders are bottleneck and degrade the
performance heavily. This is due to the fact that the effective
number of channels of these IPs’ are less than the IPs within
the network. We have found that the traffic generated by the
border IPs in small mesh, i.e. 3×3, cause the output channels
become busy and thus as an alternative viable solution we
suggest to increase the capacity of the output channels of the
border IPs.

IV. CONCLUSION

In this paper we have extended the work in [6] to evaluate
the effects of self-similar traffic on buffer size of MPSoCs
routers using DPPBP. Through comparisons between ana-
lytical bounds and extensive simulation results, we have
validated the effectiveness and accuracy of the presented
expressions and the upper and lower bound of buffer size.
We have shown in small meshes with Deterministic routing
the nodes positioned on the borders are bottleneck in terms
of buffer size due to overloading by their own LRD traffic.
As a supplementary result we demonstrated the effect of
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Fig. 2. Log-Log Plot of Comparison of Analytical and Simulation Results
for Upper Bound of The Buffer Overflow Probability vs. Buffer Size

��� ��� ���
����

����

����

����

����

���

�	

��
����
�
�����

�
	


�
�

�
��
�

��
�

�
��
��
��
���
�

���
� !!��
��	"#�

���
���$	�����"�

���
� !!��
��	"#�

���
���$	�����"�

Fig. 3. Log-Log Plot of Effect of Service Rate C on The Buffer Overflow
Probability vs. Buffer Size (Self-Similarity Degree H = 0.8)

increasing channel service rate in reducing the self-similarity
degree that renders to a more predictable buffer behavior
which makes the buffer allocation algorithm less compli-
cated. This is an important result in NoC design, since the
alternating solution which is increasing the router buffer size
is inappropriate and greatly increases the packets delay in the
NoC. Due to the high variability of LRD traffic, we require
to devise innovative mechanisms such as congestion control
to alleviate the degrading effects of self-similar traffic.
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