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Abstract
The performance and capacity of solid-state drives (SSDs) are

continuously improving to meet the increasing demands of mod-

ern data-intensive applications. Unfortunately, communication be-

tween the SSD controller and memory chips (e.g., 2D/3D NAND

flash chips) is a critical performance bottleneck for many appli-

cations. SSDs use a multi-channel shared bus architecture where

multiple memory chips connected to the same channel communi-

cate to the SSD controller with only one path. As a result, path

conflicts often occur during the servicing of multiple I/O requests,

which significantly limits SSD parallelism. It is critical to handle

path conflicts well to improve SSD parallelism and performance.

Our goal is to fundamentally tackle the path conflict problem

by increasing the number of paths between the SSD controller and

memory chips at low cost. To this end, we build on the idea of using

an interconnection network to increase the path diversity between

the SSD controller and memory chips. We propose Venice, a new
mechanism that introduces a low-cost interconnection network

between the SSD controller and memory chips and utilizes the path

diversity to intelligently resolve path conflicts. Venice employs

three key techniques: 1) a simple router chip added next to each

memory chip without modifying the memory chip design, 2) a path

reservation technique that reserves a path from the SSD controller

to the target memory chip before initiating a transfer, and 3) a

fully-adaptive routing algorithm that effectively utilizes the path

diversity to resolve path conflicts. Our experimental results show

that Venice 1) improves performance by an average of 2.65×/1.67×
over a baseline performance-optimized/cost-optimized SSD design

across a wide range of workloads, 2) reduces energy consumption

by an average of 61% compared to a baseline performance-optimized

SSD design. Venice’s benefits come at a relatively low area overhead.

CCS Concepts
• Hardware → External storage; Memory and dense storage; • In-
formation systems→ Storage architectures.
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1 Introduction
Flash-memory-based solid-state drives (SSDs) are ubiquitous, from

cloud environments to mobile devices [1–28]. The high perfor-

mance, low power consumption and shock resistance of SSDs make

them suitable replacements for hard disk drives (HDDs) [1, 29, 30].

The rise in the number of data-intensive applications has resulted in

the widespread adoption of SSDs in computing systems, increasing

the demand for higher performance and capacity in SSDs. Although

SSD vendors have significantly improved both performance and

capacity of SSDs (e.g., [22, 31–34]) over the years, communication

within the SSD (i.e., between the SSD controller and NAND flash

chips) is still a critical performance bottleneck [7, 24, 35–46] for

many applications, especially workloads with a large number of

random I/O requests [6, 7, 15, 17, 38, 46–50].

Commodity SSDs use a multi-channel shared bus architecture

(e.g., [1, 6–15]) for communication between the SSD controller

and NAND flash chips. In this architecture, the SSD controller is

connected to flash chips via multiple channels (typically 4 to 16 [51–

53]) with a number of flash chips (typically 4 to 32 [51, 52, 54, 55])

connected to each channel. Thus, each flash chip has only one
path to communicate with the SSD controller and several flash

chips share the same path. As a result, there is a high likelihood

that multiple I/O requests access NAND flash chips on the same
channel. These I/O requests should be transferred serially on the

same channel, which significantly limits SSD parallelism. We call

this problem path conflict. To quantify the effect of path conflicts on

SSD performance, we compare the performance of a state-of-the-art

baseline SSD with an ideal (i.e., path-conflict-free) SSD. We observe

that the ideal SSD outperforms the baseline SSD by 4× on average

across nineteen data-intensive real-world workloads (see §3 for

more detail).

SSD vendors attempt to reduce path conflicts by increasing the

number of channels in the SSD. However, this is not a scalable

solution since increasing the number of channels makes the SSD

controller more complex (e.g., the SSD controller needs more I/O

pins to service more parallel channels), increasing the overall cost

of the SSD. A recent prior work [15] attempts to address the path

conflict problem by increasing the bandwidth of each SSD channel.

This work proposes to utilize the control and data pins of flash
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chips for both command and data transfer, effectively providing

2× the SSD channel bandwidth. Unfortunately, such techniques 1)

are expensive as they require relatively large modifications to the

commodity NAND flash memory chips (e.g., 20% area overhead in

each flash die [15]), and 2) alleviate but cannot effectively resolve

path conflicts (as we show in §3.3).

Our goal is to fundamentally address the path conflict problem

in SSDs by providing high path diversity at low cost for commu-

nication between the SSD controller and flash chips. Our key idea

is to use a low-cost interconnection network to increase the path

diversity between the SSD controller and flash chips. Some prior

works propose the use of an interconnection network within an

SSD to provide a scalable solution to increase SSD capacity [7, 38].

Such works can potentially be repurposed to tackle the path con-

flict problem. However, prior SSD interconnection network designs

have two main weaknesses, which prevent them from effectively

addressing the path conflict problem. First, prior works impose sig-

nificant area (i.e., cost) overhead as they integrate a buffered router

(e.g., 16KB buffer per router port) inside each flash chip. Such a de-

sign increases the area and the number of I/O pins of the flash chip.

Second, prior works do not resolve path conflicts effectively be-

cause they employ a simple deterministic routing algorithm, which

cannot utilize the interconnection network’s rich path diversity (as

we show in §3.3).

We propose Venice,1 a new mechanism that introduces a low-

cost interconnection network of flash chips to fundamentally tackle

the path conflict problem while effectively addressing the two ma-

jor weaknesses of prior works on SSD interconnection networks.

Venice employs three key techniques. First, Venice adds a new

router chip next to each flash chip without modifying the flash chip.

Routers are connected in a network topology, such as a 2D mesh.

Second, Venice reserves a network path for each I/O request before

initiating the command and data transfer. This technique ensures

that the I/O request transfer does not experience path conflicts

in the network, which avoids the need for large buffers in each

router. Third, to find a free path between the SSD controller and

the flash chip, Venice uses a non-minimal fully-adaptive routing

algorithm that effectively utilizes the interconnection network’s

path diversity.

We evaluate Venice using MQSim [57, 58], a state-of-the-art SSD

simulator. We use two baseline SSD configurations, performance-
optimized and cost-optimized and a wide variety of I/O-intensive

benchmarks (see §5). Our evaluation yields three key results that

demonstrate Venice’s effectiveness. First, for the performance-

optimized configuration, Venice improves performance by an aver-

age of 2.65× (up to 7.10×) and 1.92× (up to 4.30×) compared to the

baseline SSD design and best-performing prior work [38] (without

taking the overhead of prior work into account), respectively. For

the cost-optimized configuration, Venice improves performance by

an average of 1.67× (up to 3.68×) and 1.47× (up to 2.90×) compared

to the baseline SSD design and the best-performing prior work [38],

respectively. Second, Venice reduces energy consumption by an

average of 61% and 46% compared to the baseline performance-

optimized SSD design and the best-performing prior work [38],

respectively. Third, Venice’s benefits come at a relatively low area

1
Named after the network of canals in the city of Venice [56].

overhead. Venice’s routers impose 8% area overhead to the SSD

printed circuit board (PCB). Venice’s interconnection network links,

in total, occupy 44% lower area compared to the baseline multi-

channel shared bus architecture.

This paper makes the following contributions:

• We demonstrate the importance of the path conflict problem

in modern SSD designs, and quantify its performance impact.

• We propose Venice, a new mechanism that introduces a low-

cost interconnection network of flash chips to fundamentally

address the path conflict problem in SSDs.

• We introduce three key techniques that enable Venice: 1)

a simple router chip added next to each flash chip without

modifying the flash chip itself, 2) a path reservation tech-

nique to reserve paths from the SSD controller to target flash

chips, and 3) a non-minimal fully-adaptive routing algorithm

to effectively utilize the path diversity in the interconnection

network.

• We rigorously evaluate Venice and show that it significantly

improves performance over state-of-the-art SSD designs on

both performance- and cost-optimized SSD configurations.

2 Background
We provide a brief background on the baseline multi-channel shared

bus SSD architecture. A typical modern SSD consists of an SSD

controller and an array of flash chips. The host system uses a high-

speed communication interface (e.g., PCIe [59]) to communicate

with the SSD. The SSD controller communicates with the flash

chips using the shared flash channels. Figure 1 shows a high-level

overview of a modern SSD.
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Figure 1: High-level overview of a modern SSD

2.1 Flash Chip Array
Multiple flash chips ( 1 ) [6, 22] are connected to a flash controller

( 2 ) through a shared channel in the multi-channel shared bus

architecture. Each flash chip ( 1 ) contains one or more (typically

1 to 4) flash dies. Flash dies operate independently of each other.

Each die ( 2 ) consists of multiple (e.g., 2 or 4) planes. A plane ( 3 )

typically contains thousands of blocks, and each block ( 4 ) consists

of tens to hundreds of pages. A flash page ( 5 ) consists of a set of

flash cells connected to the same wordline within a flash block. Read

and write operations are typically performed at the granularity of a

flash page (e.g., 16KB in size). However, erase operations happen at

block granularity [19–22, 24, 27, 28]. Planes in the same die share

the peripheral circuitry used to access pages; as such, they can

concurrently operate only when accessing pages (or blocks) at the

same offset, which are called multi-plane operations.
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Based on the number of bits stored in a flash cell, it is catego-

rized as a single-level cell (SLC; 1 bit) [60], multi-level cell (MLC;

2 bits) [61], triple-level cell (TLC; 3 bits) [62], or quad-level cell

(QLC; 4 bits) [63]. The capacity of the SSD increases as the flash cell

stores more bits, but the increased flash cell density leads to higher

latency and lower endurance [1, 5, 19, 22, 27, 28, 30, 35, 64–67].

2.2 SSD Controller
The SSD controller ( 3 ) is responsible for managing the NAND

flash chips ( 1 ) and the I/O requests sent by the host ( 4 ). The

SSD controller contains an embedded microprocessor that executes

firmware called the Flash Translation Layer (FTL) ( 5 ) [16, 49, 57, 68,

69]. The SSD controller stores metadata (e.g., a logical-to-physical

page mapping table) used to manage the FTL functionality and

caches frequently accessed pages in DRAM ( 6 ) that is part of the

SSD. The SSD controller consists of multiple flash controllers ( 2 ).

A flash controller is an embedded processor that interfaces with

multiple flash chips using a shared channel. The flash controller

selects the flash chip for a read/write operation and initiates the

command and data transfer.

Host Interface Layer. Host Interface Layer (HIL) ( 7 ) [57, 70,

71] is the interface between the host system ( 4 ) and the SSD con-

troller ( 3 ). HIL communicates with the host system using a com-

munication protocol over the system I/O bus. HIL in a commodity

SSD typically supports the Advanced Host Controller Interface

(AHCI) [72] or the NVM Express (NVMe) [32] interface. AHCI

builds upon the Serial ATA (SATA) [73] protocol, which is com-

monly used to connect the host system to the hard disk drives. AHCI

and SATA interfaces provide very low throughput for SSDs because

of the availability of a single I/O queue to submit I/O requests to

the SSD.

To overcome the throughput bottleneck of AHCI and SATA,

modern SSDs have adopted the NVMe protocol, which uses the

PCI Express (PCIe) system bus to communicate with the host (see,

e.g., [23, 31, 55, 57, 74–80]). NVMe directly exposes multiple SSD

I/O queues to the host, thereby enabling 1) high-bandwidth and

low-latency communication between the SSD and the host, 2) more

fine-grained control of the I/O request scheduling policy by the

SSD controller [23]. The host system transfers I/O requests into a

Submission Queue allocated to the application in the HIL. HIL picks

an I/O request from the Submission Queue and sends the request to

the FTL for processing. After the completion of the I/O request, the

HIL updates the Completion Queue to inform the host system.

Flash Translation Layer ( 3 ). FTL has four major responsibili-

ties [16, 49, 57, 68, 69]. First, for each page of data, FTL manages the

mapping of each logical address (i.e., the requested address in the

host system’s address space) to a physical address (i.e., the actual lo-

cation in the physical flash chips where the requested data resides).

Before new data is written to a flash page, an entire flash block

that contains the target flash page has to be erased. This is called

the erase-before-write requirement. Unfortunately, the erase-before-
write requirement of NAND flash memory makes in-place writes

prohibitively costly in terms of performance, energy consumption,

and lifetime [19, 22, 26, 27, 68]. To overcome this issue, the FTL

implements an out-of-place write policy in modern SSDs [19, 22, 27].

Whenever a page of data is written to by the host system to a logical

page address, the FTL 1) invalidates the corresponding physical

page address where the overwritten data resides, 2) writes the new

page data to a different physical page address, and 3) updates the

logical-to-physical page mapping metadata of the logical page.

Second, the FTL performs garbage collection (GC) [6, 19, 22, 27,
46, 57, 81–85] to recover the wasted space due to pages invalidated

by the out-of-place write policy. During GC, the FTL 1) chooses

a victim block with the least number of valid pages, 2) copies all

valid pages in the victim block to another block, 3) updates the

logical to physical address mapping metadata for pages that have

been already copied, and 4) erases the victim block to use this block

for future write operations. Third, the FTL implements a wear-
leveling technique to distribute the writes evenly across all the flash
blocks so that the flash blocks in the SSD wear out in a uniform

manner [6, 16, 49, 66, 69, 86]. Having a wear-leveling mechanism

in FTL is critical for SSD lifetime as the number of times a flash

block can be erased and programmed is limited [22, 87, 88]. Fourth,

the FTL avoids frequent lookups to the flash memory by caching

frequently-accessed data (e.g., the logical-to-physical page mapping

table [68]) or frequently-requested pages by the host in the DRAM

( 6 ) that is present inside the SSD.

Flash Controller ( 2 ). A flash controller (FC) [5, 15, 53, 89, 90]

is an embedded processor in an SSD that interfaces with multiple

flash chips connected through a shared channel. The FTL commu-

nicates with the FC to perform a NAND flash operation. The FC

communicates with the flash chips using the control/data and arbi-

tration pins [5, 91]. For a write operation, the FC 1) performs data

randomization to avoid high bit error rates caused by worst-case

data patterns [19, 22, 27], 2) performs Error-Correcting Code (ECC)

encoding to improve reliability and performance [5, 22, 24, 27, 92–

94], 3) sends a write command (with the physical page address), to

the target flash chip, and 4) transfers the randomized ECC-encoded

write data to the target flash chip. For a read operation, the FC

1) sends a read command to the target flash chip, 2) receives the

read data from the flash chip, 3) performs ECC decoding and cor-

rects possible errors in the data [5, 19, 22, 24, 27, 92–94],
2
and 4)

derandomizes the read data to recover the original data.

3 Motivation
We describe the path conflict problem in a typical multi-channel

shared bus SSD architecture (which we call Baseline SSD) and major

approaches to mitigate path conflicts.

3.1 The Path Conflict Problem in Modern SSDs
A typical SSD (e.g., [1, 6, 8–11, 13, 14, 54, 55, 79, 80]) uses a

multi-channel shared bus architecture for communication between

the SSD controller and NAND flash chips. The SSD controller is

connected to flash chips via a number of shared channels (typ-

ically 4 to 16 [51–53]) with multiple flash chips (typically 4 to

32 [51, 52, 54, 55]) connected to each channel. Figure 2(a) shows an

example configuration in such a Baseline SSD where there are four

shared channels with four flash chips connected to each shared

channel. In Baseline SSD, each flash chip has only one channel (or

path) to communicate with the SSD controller. Unfortunately, the

flash chips connected to the same channel share the same path to

the SSD controller. Path sharing causes the path conflict problem,

2
The FC retries the read process if ECC decoding fails [5, 19–22, 27, 28, 94–98].
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where an I/O request needs to wait for the path to become free, if

the path is being used for another I/O request.

(b) Packetized SSD (pSSD)

(c) Packetized Network SSD (pnSSD)
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Figure 2: Flash chip array architecture of four SSD designs:
Baseline SSD, Packetized SSD (pSSD) [15], Packetized Net-
work SSD (pnSSD) [15], and Network-on-SSD (NoSSD) [38].

To demonstrate the path conflict problem, we show two examples

of service timelines of ongoing read I/O requests in Figure 3. For

simplicity, the figure shows only three major steps during a read

request, the read command (CMD 1 ), the flash read operation (RD
Operation 2 ), and read data transfer from the flash chip to the SSD

controller (Transfer 3 ).

The first example (Figure 3 top) shows two ongoing read requests

to two different flash chips connected to the same channel (i.e., the
two requests experience the path conflict problem). Unfortunately,

in this case, only the second step ( 2 ), flash read operation, of the

two ongoing read requests can be performed in parallel. Other steps

( 1 and 3 ) should be performed one after the other (i.e., serially)

because they use the same path, which increases the total service

time (the total time taken for processing an I/O request within the

SSD) of these two requests. The second example (Figure 3 bottom)

shows two ongoing read requests to two flash chips connected to

two different channels (i.e., no path conflict problem). This example

shows that these two I/O requests can be serviced completely in

parallel, which reduces the total service time of the two I/O requests.

CMD RD Operation Transfer1 2 3Flash chip #1

Flash chip #2

Flash chip #4

timeFlash chip #8

Channel #0

Channel #1:

Channel #2:
Saved

CMD RD Operation Transfer

CMD RD Operation Transfer

CMD RD Operation Transfer

Same
Channel
Timeline

Different
Channels
Timeline

Figure 3: Service timeline of two read requests to two dif-
ferent flash chips. The two flash chips are connected to the
same channel (top) or different channels (bottom).

To understand how much the path conflict problem can increase

the total service time, we use the latency numbers for CMD 1 , RD

Operation 2 , and Transfer 3 from a performance-optimized SSD

configuration (see §5). In a performance-optimized SSD configu-

ration, CMD, RD Operation, and Transfer take 10𝑛s, 3𝜇s, and 4𝜇s,

respectively [31, 99]. The total service time for the two read requests

that experience the path conflict problem (as depicted in Figure

3 top) is 11.01𝜇s (i.e., CMD + RD Operation + Transfer + Transfer =
11.01𝜇𝑠). In contrast, ideally (i.e., without a path conflict, as depicted

in Figure 3 bottom), the total service time of the two requests is

7.01𝜇s (i.e., CMD + RD Operation + Transfer = 7.01𝜇𝑠). Thus, in this

simple example, the path conflict problem increases the average I/O

access latency by 57%, which in turn results in lower SSD through-

put. The performance overhead of path conflicts can be even higher

when (1) more than two I/O requests experience path conflicts, and

(2) the data transfer size of each request is larger (e.g., a multi-plane

operation; see §2).

The path conflict problem affects the performance of read re-

quests more than that of write requests [9, 11, 12, 40–42]. This is

because data transfer time for a read request is comparable to or

longer than the flash read latency [31, 100, 101], while the flash

write latency (e.g., 100𝜇s for a performance-optimized SSD configu-

ration [31, 99]) dominates the total service time of a write request.

We conclude that the path conflict problem can significantly in-

crease the total service time of I/O requests and limit SSD through-

put, especially for read-intensive workloads.

3.2 Approaches to Mitigate Path Conflicts
We describe two major prior approaches to address path conflict

problem and their limitations. We quantitatively analyze the effec-

tiveness of these approaches at mitigating path conflicts in §3.3.

Increasing Flash Channel Bandwidth. A recent work by Kim

et al. [15] proposes the Packetized SSD (pSSD) (Figure 2(b)), a tech-

nique to increase the flash channel bandwidth to 2× the channel

bandwidth of the Baseline SSD. This technique 1) utilizes control

and data pins of the flash chip to transfer both commands and data,

thus increasing the channel bandwidth, and 2) integrates an on-die

controller inside each flash chip to enable packetization between

the flash controller and the flash chip. While pSSD can reduce the

performance overhead of path conflicts by reducing the I/O transfer

latency, pSSD imposes significant area overhead (i.e., 20% [15]) in

each flash chip.

Increasing Path Diversity. Prior works [7, 15, 38] propose tech-
niques to mitigate path conflicts by increasing the number of paths

through which the SSD controller can access a flash chip (i.e., these

approaches increase path diversity).
Kim et al. [15] propose the Packetized Network SSD (pnSSD)

(Figure 2(c)), a technique that provides two paths to access each flash

chip, which reduces the performance overhead of path conflicts.

pnSSD introduces an interconnection network similar to the 2D

mesh topology [102], except in each dimension, flash chips are

connected using a shared bus. As a result, an N×N flash chip array

has N horizontal and N vertical channels. In pnSSD, a flash chip can

be accessed using either a horizontal channel or a vertical channel.

Tavakkol et al. [7, 38] propose Network-on-SSD (NoSSD) (Figure

2(d)), which replaces the multi-channel shared bus architecture

with a 2D mesh interconnection network of flash chips. NoSSD

significantly increases the path diversity compared to the Baseline

SSD and pnSSD. However, NoSSD has two main weaknesses that
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limit its effectiveness at mitigating the path conflict problem. First,

NoSSD imposes significant area and cost overhead due to 1) the

integration of a buffered router (e.g., with a 16KB buffer per router

port) inside each flash chip, and 2) 4× increase in the number of I/O

pins compared to a commodity flash chip. Second, NoSSD does not
utilize the path diversity effectively as NoSSD employs simple deter-

ministic routing (i.e., the dimension-order routing algorithm [102])

that cannot adapt to the availability of multiple free paths between

the flash controller and target flash chip.

3.3 Effectiveness of Prior Approaches
Methodology.We study the effectiveness of prior approaches at

mitigating path conflicts using a state-of-the-art SSD simulator,

MQSim [57, 58], across nineteen real-world data-intensive work-

loads (see §5 for our methodology). To this end, we measure the

speedup of pSSD, pnSSD, and NoSSD over the Baseline SSD in a

performance-optimized SSD configuration (see §5). We compare

the speedup results with the speedup of the ideal (i.e., path-conflict-

free) SSD. In the path-conflict-free SSD, we assume that each flash

chip has a direct separate channel to communicate with the SSD

controller; therefore, no path conflict can happen. An I/O request

does not experience path conflicts in the path-conflict-free SSD, but

it can still be delayed if the target flash chip is busy.

Performance Results. Figure 4 shows the performance of pSSD,

pnSSD, NoSSD and path-conflict-free SSD compared to the Baseline

SSD. We make five major observations. First, the path-conflict-free

SSD provides an average of 4× (up to 11.74×) the performance of

the Baseline SSD since it does not suffer from any path conflict.

Second, pSSD shows an average performance improvement of 27%

over Baseline SSD due to its increased channel bandwidth. Third,

pnSSD provides an average performance improvement of 30% over

Baseline SSD due to its increased path diversity. Fourth, NoSSD

outperforms Baseline SSD by 35% on average due to the significantly

increased path diversity provided by the interconnection network

of flash chips. Fifth, although NoSSD outperforms pSSD and pnSSD,

NoSSD’s speedup is still greatly lower than the path-conflict-free

SSD’s speedup (4×). The main reason is that NoSSD does not utilize

the path diversity effectively.

We conclude that while prior approaches improve the perfor-

mance of the SSD at a large cost overhead, none of them effectively

mitigate the path conflict problem, and a large potential remains

between their performance and the performance of an SSD that

does not suffer from path conflicts.
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Figure 4: Performance of pSSD, pnSSD, NoSSD and the
ideal path-conflict-free SSD on a performance-optimized
SSD configuration (see §5). Performance is shown in terms
of speedup in overall execution time over the Baseline SSD.

3.4 Our Goal
Based on our observations and analyses in §3.1, §3.2 and §3.3, we

conclude that 1) the path conflict problem significantly limits the

performance of modern SSDs, and 2) none of the prior approaches

(i.e., pSSD, pnSSD, and NoSSD) effectively mitigate the path conflict

problem even though they come with significant area overheads

and cost overheads.

Our goal is to fundamentally address the path conflict prob-

lem in SSDs by 1) providing path diversity inside the SSD at low

cost, and 2) effectively utilizing the increased path diversity for

communication between the SSD controller and flash chips.

4 Venice
Overview.We design Venice, a newmechanism that fundamentally

addresses the path conflict problem in modern SSDs. Venice 1)

provides rich path diversity between the SSD controller and flash

chips by introducing a low-cost interconnection network of flash

chips, and 2) utilizes the path diversity to identify and reserve a

conflict-free path for an I/O request .Venice’s design is based on

three key techniques: (1) a low-cost interconnection network of

flash chips in the SSD (§4.1), (2) reservation of a path between the

flash controller and the flash chip for each I/O request (§4.2), and

(3) a non-minimal fully-adaptive routing algorithm to utilize the

path diversity provided by the interconnection network of flash

chips (§4.3).

4.1 Low-Cost Interconnection Network of
Flash Chips

We want to provide rich path diversity between the SSD controller

and flash chips at low cost. Venice can utilize the rich path diversity

to eliminate path conflicts. To this end, we connect the flash chips

using a low-cost interconnection network. The key design decision

that enables our approach to be low cost is the separation of the

router from the flash chip such that the flash chip is not modified.

We introduce a new building block, called flash node, which con-

sists of a flash chip and a separate router chip. Figure 5(a) shows a
flash node. In each flash node, a flash chip communicates with a

router chip using its I/O data pins (i.e., injection/ejection ports) that

are otherwise used for connecting the flash chip to the shared chan-

nel. Our design connects the flash nodes using an interconnection

network topology. Figure 5(b) shows an example interconnection

network of flash nodes using the 2D mesh topology. The router

chip in each flash node is connected to the router chips in the

neighboring flash nodes using bidirectional links.

4.2 Path Reservation
Key Idea. To ensure that the I/O request transfer does not experi-

ence path conflicts in the network, Venice reserves a conflict-free

path between the flash controller and the target flash chip for each

I/O request before starting the transfer. This technique avoids the

need for large buffers in each router that are otherwise required to

store the data of each I/O request that experiences a path conflict.

Implementation. Venice identifies and reserves a path by sending

a special packet called scout packet. Figure 6 shows the structure of
a scout packet for an SSD with 64 flash chips and 8 flash controllers.
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Figure 5: Venice’s low-cost interconnection network

The scout packet consists of two 8-bit scout flits, a header flit 1 ,

and a tail flit 2 . Each scout flit contains a 2-bit type information,

whose 1) most significant bit denotes whether the flit is the header

flit or the tail flit, and 2) least significant bit denotes if the flit is in

reserve mode to reserve a link in the path or cancel mode to cancel

a reservation. The destination flash chip ID is stored in the last 6

bits of the header flit (6 bits are required to represent 64 flash chips).

In the tail flit, 3 bits are used to denote the source flash controller,

and the other 3 bits are unused. The source flash controller ID is

the same as the scout packet ID.

Type

Type

Destination Flash Chip ID

Source Flash
Controller ID Unused Bits

2 bits

2 bits

6 bits

3 bits 3 bits

Scout Packet

8 bits

2-bit Type Info

1st
Bit

2nd
Bit

0: Cancel
1: Reserve

0: Header Flit

1: Tail Flit1

2

Header
Flit

Tail
Flit

Figure 6: Structure of the scout packet for an SSD with 64
flash chips and 8 flash controllers

For a given I/O request, Venice checks if the closest flash con-

troller to the target flash chip is available. If so, Venice selects the

flash controller to handle the I/O request. Otherwise, Venice uses

the nearest free flash controller. The source flash controller sends

a scout packet in reserve mode to identify and reserve a path to

the destination chip. Venice uses a routing algorithm (e.g., the non-

minimal fully-adaptive routing algorithm as described in §4.3) to

route a scout packet from the source flash controller to the desti-

nation flash chip. Venice reserves the interconnection network’s

links that a scout packet takes to reach the destination node. Each

reserved link is bidirectional, which enables data transfer 1) from

the flash controller to the flash chip (e.g., a write request) using the

forward path, and 2) from the flash chip to the flash controller (e.g.,

a read request) using the backward path. To this end, we introduce

a table, called router reservation table, to each router chip. Figure 7

shows the structure of Venice’s router 1 and router reservation

table 2 . The router reservation table keeps track of 1) the packet

ID 3 , which is the same as the source flash controller ID from

which the packet was sent, and 2) which two ports (i.e., entry 4

and exit 5 ports) are connected bidirectionally (based on reserva-

tions that were made). Each row in the router reservation table has

a valid bit 6 that shows whether the entry is valid. The packet ID

has log(n) bits to denote one of the n flash controllers, which allows

up to n scout packets to be sent simultaneously. In our example

interconnection network configuration with 8 flash controllers, we

need 3 bits for the packet ID. The entry port 4 and exit port 5

information in the router reservation table each contains 2 bits 7

to denote one of the four ports in the router.

When the scout packet arrives at the destination flash chip,

Venice has already reserved the conflict-free forward and back-
ward paths. The router connected to the destination flash chip uses

the backward path to send the scout packet back to the source flash

controller. Once the source flash controller receives back the scout

packet, it schedules the I/O request transfer using the reserved path.

If a scout packet is unable to find a free link at a router during

the path reservation process, the router enables the cancel mode

in the scout packet, which cancels the reservation by removing its

entry in the router reservation table. The scout packet backtracks

along its path to a previously traversed router (i.e., upstream router).

Depending on the routing algorithm’s adaptivity, the scout packet

may either try a different free output link in the upstream router

or backtrack further (i.e., to the upstream router of the upstream

router). In case the scout packet is unable to find a free output link

during backtracking, the scout packet can arrive back at the flash

controller without reserving a path. When the source flash con-

troller receives the scout packet in cancel mode, it retries the path

reservation process immediately by sending a new scout packet.
3

Links
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… … …
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1
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Figure 7: Structure of a router in Venice’s interconnection
network of flash nodes (assuming 8 flash controllers)

4.3 Utilizing Path Diversity
Key Idea. To effectively utilize the interconnection network’s path

diversity, Venice uses a non-minimal fully-adaptive routing algo-

rithm for routing a scout packet (during the path reservation pro-

cess) through the interconnection network of flash nodes. Venice’s

non-minimal fully-adaptive routing algorithm dynamically identi-

fies a conflict-free path between the flash controller and the flash

chip. This algorithm effectively utilizes the idle links in the inter-

connection network to find a non-minimal path when a minimal

path is unavailable.

Figure 8 illustrates how a non-minimal fully-adaptive routing

algorithm helps tomitigate the path conflict problem via an example.

In this example, a new I/O request 𝑅 has 𝐹2 as its destination flash

chip. In the network, there are three paths already reserved for other

I/O requests (marked in red in Figure 8): 𝐹𝐶0 → 𝐹0 → 𝐹1 → 𝐹6,

𝐹𝐶1 → 𝐹5 → 𝐹6 → 𝐹7 → 𝐹8, and 𝐹𝐶2 → 𝐹10 → 𝐹11 → 𝐹12 → 𝐹7.

The only free flash controller, 𝐹𝐶3, is assigned to request 𝑅. Each

3
We study more optimizations, including when to resend the scout packet, in the

path reservation process in the extended version of our paper [103].
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minimal path from 𝐹𝐶3 to 𝐹2 has at least one busy link, and thus,

is not path-conflict-free. However, there are a number of non-

minimal paths from the 𝐹𝐶3 to 𝐹2 that are path-conflict-free. An

example is 𝐹𝐶3 → 𝐹15 → 𝐹16 → 𝐹17 → 𝐹18 → 𝐹13 → 𝐹8 →
𝐹3 → 𝐹2 (shown in blue in Figure 8). Venice uses a non-minimal

fully-adaptive routing algorithm (described in Algorithm 1) during

the path reservation process to increase its ability to mitigate the

path conflict problem.
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F8

Flash Controller (FC) FC0
Flash Node (F) 

Interconnect Link FC1
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Figure 8: Example demonstrating how Venice’s non-
minimal routing algorithm finds a conflict-free path in the
interconnection network of flash nodes

To effectively use a non-minimal fully-adaptive routing algo-

rithm during the path reservation process in Venice, we should

address two key challenges: 1) performance overhead of exercising

a non-minimal path to service the I/O request, and 2) the need to

avoid deadlock/livelock. We describe these two key challenges and

Venice’s techniques to address them.

Performance Overhead of Exercising a Non-Minimal Path.
The increased path length of the non-minimal route can cause

two issues. First, a non-minimal path may lead to an increase in

the command/data transfer time and thus the overall latency for

servicing the I/O request. After reserving a free path, the transfer

latency (𝑇𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 ) in seconds can be calculated using Equation 1:

𝑇𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 = [𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠𝑖𝑧𝑒/𝑙𝑖𝑛𝑘_𝑤𝑖𝑑𝑡ℎ)] × 𝑙𝑖𝑛𝑘𝑙𝑎𝑡 . (1)

where distance, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠𝑖𝑧𝑒 , link_width, and 𝑙𝑖𝑛𝑘𝑙𝑎𝑡 . are the num-

ber of links between the flash controller and flash chip (i.e., hops),

the command/data transfer size in terms of the number of bytes, the

link width in terms of the number of bytes, and the latency of a sin-

gle transfer (of size link_width) on the link in seconds, respectively.

A non-minimal path has a longer distance compared to a minimal

path. We study the latency overhead of a non-minimal path for

I/O data and flash command transfer. For the I/O data transfer, the

performance overhead of a longer path is negligible. This is because

𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠𝑖𝑧𝑒 dominates 𝑇𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 as I/O data transfers are large in

size (e.g., 16KB). Flash commands, on the other hand, have a small

𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠𝑖𝑧𝑒 (i.e., only a few bytes), and thus, a longer path can sig-

nificantly increase their transfer latency. As discussed in §3.1, the

service time of an I/O request consists of flash command transfer

time, flash operation latency and I/O data transfer time. The total

service time is dominated by the I/O data transfer time and the flash

operation latency, and thus, the longer command transfer time due

to a non-minimal path has a negligible effect on the total service

time of the I/O request.

Second, a non-minimal path occupies more links in the inter-

connection network compared to a minimal path. If a minimal

path is used instead of a non-minimal path, the extra links of a non-

minimal path can potentially be used for transferring other ongoing

requests, which increases the effectiveness of Venice. To this end,

Venice attempts to find path-conflict-free minimal paths during

the path reservation process as much as possible (as described in

Algorithm 1).

Need to Avoid Deadlock/Livelock. A non-minimal fully-

adaptive routing algorithm can potentially cause (1) deadlock in

the interconnection network [102, 104–114], where multiple net-

work packets cannot move forward as they circularly depend on

each other to free up resources (e.g., channels, buffers), and (2)

livelock [102, 104–109, 114–117], where at least one packet keeps

traversing the network without reaching its destination. Venice’s

interconnection network can experience deadlock and livelock only

during the path reservation process where the scout packets are

routed using the non-minimal fully-adaptive routing algorithm.
4

Venice handles deadlock by using backtracking of a scout packet.

When a scout packet experiences path conflict during the path

reservation process, it backtracks along its path to the previously

visited router (i.e., the upstream router) in order to choose a different

path. As a result, a scout packet is never blocked due to resource

unavailability in the network and deadlock does not happen.

Venice handles livelock by restricting the number of times a scout

packet can visit the same router. A scout packet can reserve each

output port of a router only once and hence, the scout packet may

revisit the same router at most three times
5
in an interconnection

network with a 2D mesh topology. When a scout packet revisits the

same router three times, the scout packet traces its path back to the

upstream router (using the router reservation table) and attempts to

reserve a different output port in the upstream router. In the worst

case, when a scout packet fails to reserve a path to the destination

after visiting all the routers at most three times, it will return to

the source flash controller. The flash controller immediately sends

a new scout packet to retry the path reservation.

Implementation. Algorithm 1 shows the pseudocode for the non-

minimal fully-adaptive routing algorithm in Venice. The inputs to

the algorithm are: 1) scout packet ID, 2) current router ID, 3) scout

packet’s destination router ID, 4) input port of the router through

which the scout packet has arrived, 5) the status (free or busy) of

the output ports in the router, and 6) the interconnection network

structure in terms of number of rows and columns (assuming a 2D

mesh topology). The algorithm returns the output port in which

the scout packet should traverse to the downstream router.

To find an appropriate output port, the algorithm first attempts

to find a free output port that leads to a minimal path (lines 2-32).

To this end, the algorithm compares the current router ID with the

scout packet’s destination router ID in both X (horizontal) and Y
(vertical) dimensions. Based on the comparison, it switches among

nine cases (lines 5-26). In each case, the algorithm checks the status

of the corresponding output port and adds the output port to the

output list if the corresponding output port is free (e.g., lines 6-10).

The algorithm checks the number of output ports added to the

output list (line 27). In a 2D mesh topology, the size of the output

4
Once a path between the flash controller and the destination flash chip is reserved,

there is no 1) deadlock, as there is no path conflict during I/O data or flash command

transfer, or 2) livelock, as the path from the source flash controller and the destination

flash chip is deterministically set as a circuit.

5
The number of times a scout packet can revisit a router is four minus one, i.e.,

number of ports in a router minus the entry port of the scout packet.
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Algorithm 1 Venice’s Non-Minimal Fully-Adaptive Routing Alg.
Input: scout packet ID: 𝑃𝐼𝐷 , current router ID: 𝐼𝐷𝑟𝑐 , scout packet’s destination router ID: 𝐼𝐷𝑟𝑑 ,

the Input_port, the output ports’ status, and network structure: 𝑁𝑟 rows and 𝑁𝑐 columns

Output: Output_port
1: procedure Find output port

2: 𝐷𝑖𝑓 𝑓𝑥 = 𝐼𝐷𝑟𝑑%𝑁𝑐 − 𝐼𝐷𝑟𝑐%𝑁𝑐

3: 𝐷𝑖𝑓 𝑓𝑦 = 𝐼𝐷𝑟𝑑 /𝑁𝑐 − 𝐼𝐷𝑟𝑐 /𝑁𝑐

4: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑐𝑙𝑒𝑎𝑟 ()
5: Switch(𝐷𝑖𝑓 𝑓𝑥 and 𝐷𝑖𝑓 𝑓𝑦 ) //Nine cases in total as 𝐷𝑖𝑓 𝑓𝑥 and 𝐷𝑖𝑓 𝑓𝑦 can each be a pos-

itive, zero, or negative value

6: 𝐶𝑎𝑠𝑒1 : 𝐷𝑖𝑓 𝑓𝑥 > 0 & 𝐷𝑖𝑓 𝑓𝑦 > 0

7: if(𝑅𝑖𝑔ℎ𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 () == 𝑓 𝑟𝑒𝑒) then
8: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑅𝑖𝑔ℎ𝑡 )
9: if(𝑈𝑝.𝑠𝑡𝑎𝑡𝑢𝑠 () == 𝑓 𝑟𝑒𝑒) then
10: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑈𝑝)
11: 𝐶𝑎𝑠𝑒2 : 𝐷𝑖𝑓 𝑓𝑥 > 0 & 𝐷𝑖𝑓 𝑓𝑦 < 0

12: if(𝑅𝑖𝑔ℎ𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 () == 𝑓 𝑟𝑒𝑒) then
13: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑅𝑖𝑔ℎ𝑡 )
14: if(𝐷𝑜𝑤𝑛.𝑠𝑡𝑎𝑡𝑢𝑠 () == 𝑓 𝑟𝑒𝑒) then
15: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝐷𝑜𝑤𝑛)
16: 𝐶𝑎𝑠𝑒3 : 𝐷𝑖𝑓 𝑓𝑥 > 0 & 𝐷𝑖𝑓 𝑓𝑦 == 0

17: if(𝑅𝑖𝑔ℎ𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 () == 𝑓 𝑟𝑒𝑒) then
18: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑅𝑖𝑔ℎ𝑡 )
19: 𝐶𝑎𝑠𝑒4 : 𝐷𝑖𝑓 𝑓𝑥 < 0 & 𝐷𝑖𝑓 𝑓𝑦 > 0 ...

20: 𝐶𝑎𝑠𝑒5 : 𝐷𝑖𝑓 𝑓𝑥 < 0 & 𝐷𝑖𝑓 𝑓𝑦 < 0 ...

21: 𝐶𝑎𝑠𝑒6 : 𝐷𝑖𝑓 𝑓𝑥 < 0 & 𝐷𝑖𝑓 𝑓𝑦 == 0 ...

22: 𝐶𝑎𝑠𝑒7 : 𝐷𝑖𝑓 𝑓𝑥 == 0 & 𝐷𝑖𝑓 𝑓𝑦 > 0 ...

23: 𝐶𝑎𝑠𝑒8 : 𝐷𝑖𝑓 𝑓𝑥 == 0 & 𝐷𝑖𝑓 𝑓𝑦 < 0 ...

24: 𝐶𝑎𝑠𝑒9 : 𝐷𝑖𝑓 𝑓𝑥 == 0 & 𝐷𝑖𝑓 𝑓𝑦 == 0

25: 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝐸 𝑗𝑒𝑐𝑡𝑖𝑜𝑛)
26: end

//check the number of output ports in the output list

27: if (𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .size() == 2) then
28: Output_port = randomly select one output port from𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡
29: Routing_Reservation_Table.insert (𝑃𝐼𝐷 , Input_port, Output_port)

30: else if (𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .size() == 1) then
31: Output_port =𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .𝑡𝑜𝑝 ()
32: Routing_Reservation_Table.insert (𝑃𝐼𝐷 , Input_port, Output_port)

33: else
34: 𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .clear();
35: if (Up.status() == free & Up != Input_link) then
36: 𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .add(Up)
37: if (Down.status() == free & Down != Input_link) then
38: 𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .add(Down)
39: if (Right.status() == free & Right != Input_link) then
40: 𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .add(Right)
41: if (Left.status() == free & Left != Input_link) then
42: 𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .add(Left)

43: if (𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 .size() > 0) then
44: Output_port = randomly select one output port from𝑁𝑜𝑛_𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡
45: Routing_Reservation_Table.insert (𝑃𝐼𝐷 , Input_port, Output_port)

46: else
47: Output_port = Input_port //traverse back to the upstream router

48: end
49: end procedure

list can be either two, one, or zero. If there are two output port

candidates in the output list, the algorithm randomly selects one

output port using a pseudo-random number generator. We use a

simple 2-bit Linear-Feedback Shift Register (LFSR) [118] present

in the router for the pseudo-random number generation. The algo-

rithm adds an entry to the router reservation table using the scout

packet ID, the input port, and the selected output port. The scout

packet then proceeds to the downstream router using the selected

output port (lines 27-29). If there is only one output port candidate
in the output list, the algorithm selects that output port and records

it in the router reservation table (lines 30-32).

However, if the output list is empty, the algorithm has failed to

find any free output port that leads to a minimal path. In this case,

the algorithm misroutes the scout packet via a free output port that
leads to a non-minimal path. To this end, the algorithm randomly

selects any free output port (except the ejection port) and adds

an entry to the router reservation table (lines 34-45). If the only

available free output port is the port that results in backtracking to

the upstream router, the scout packet travels back to the upstream

router, and the algorithm does not reserve the selected output port

(lines 46-47). When the upstream router receives the backtracking

scout packet, it clears the reservation entry for the scout packet

in the router reservation table and tries another available output

port, if any. This algorithm is used in conjunction with the livelock

avoidance mechanism of Venice that is described earlier in this

section (not shown in Algorithm 1). Note that it is also possible

to employ other non-minimal fully-adaptive routing algorithms in

Venice instead of this specific one we use and evaluate.

5 Methodology
Simulation Methodology.We evaluate Venice using MQSim [57,

58], a state-of-the-art open-source SSD simulator. MQSimmodels all

components of the SSD, including host interface, SSD controllers,

flash controllers, and flash chips. MQSim supports multi-queue

SSDs and measures the end-to-end latency [57], which makes it

a suitable tool for our study. We model two SSD configurations:

1) a performance-optimized configuration based on Samsung Z-

NAND SSD [31, 99] and 2) a cost-optimized configuration based

on Samsung PM9A3 SSD [55]. Table 1 provides details of the stor-

age characteristics of the two configurations and Venice’s design

parameters used in our evaluation. To evaluate Venice’s power

Table 1: Evaluated configurations & Venice parameters

Performance-optimized
SSD [31, 99]

240GB, Z-NAND [31, 99, 119],

8-GB/s External I/O bandwidth (4-lane PCIe Gen4);

1.2-GB/s Flash Channel I/O rate

NAND Config: 8 channels, 8 chips/channel,
1 die/chip, 2 planes/die, 128Gb die capacity,

1024 blocks/plane, 768 pages/block, 4KB page

Latencies: Read(tR): 3𝜇s; Erase (tBERS): 1𝑚s

Program (tPROG): 100𝜇s

Cost-optimized
SSD [55]

1TB, 3D TLC NAND Flash,

8-GB/s External I/O bandwidth (4-lane PCIe Gen4);

1.2-GB/s Flash Channel I/O rate

NAND Config: 8 channels, 8 chips/channel,
1 die/chip, 2 planes/die, 1024 blocks/die, 16KB page

Latencies: Read (tR): 45𝜇s; Erase (tBERS): 3.5𝑚s

Program (tPROG): 650𝜇s

Venice Design Parameters

Topology. 8×8 2D mesh topology, 8-bit 1 GHz links,

One router next to each flash chip

Router Architecture. Two 8-bit buffers per port,

1 GHz frequency

Routing Algorithm. Non-minimal fully-adaptive

Switching. Circuit switching [102]

overhead, we measure the power consumption of each router and

network link in the interconnection network (see §6.6). We analyze

1) the average power consumption of a router by implementing

its hardware description language (HDL) model and synthesizing

it for the UMC 65nm technology node [120], and 2) the average

power consumption for a 4KB data transfer over each network

link using the ORION 3.0 [121] power model. To model the power

consumption of flash read and write operations, we use the power

values from Samsung Z-SSD SZ985 [119].

Evaluated Systems. We compare Venice with the following prior

approaches (described in §3): (1) Baseline SSD, a typical SSD

with multi-channel shared bus architecture; (2) Packetized SSD

(pSSD) [15], a prior proposal that uses packetization to double the

flash channel bandwidth; (3) Packetized Network SSD (pnSSD) [15],
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a technique that increases path diversity by introducing vertical

flash channels; (4) NoSSD [7, 38], a state-of-the-art proposal on

interconnection network of flash chips that uses a deterministic

minimal routing policy to route I/O requests. We compare Venice

and the four prior approaches with an ideal path-conflict-free SSD.

In a path-conflict-free SSD, we assume that each flash chip has a

direct separate channel to communicate with the SSD controller,

which eliminates path conflicts.

Workloads.We select nineteen data-intensive storage workloads

from MSR Cambridge traces [122], Yahoo! Cloud Serving Bench-

mark (YCSB) suite [123], Slacker [124], SYSTOR ’17 [125] and YCSB

RocksDB traces [126] that are collected from real enterprise and

datacenter workloads. These workloads are chosen to represent

diverse I/O access patterns, with different read and write ratios, I/O

request sizes, and inter-request arrival times. Table 2 reports the

characteristics of the workloads chosen for our evaluation.

Table 2: Characteristics of the evaluated I/O traces

Traces Read %

Avg. Request
Size (KB)

Avg. Inter-request
Arrival Time (𝜇s)

MSR Cambridge [122]

hm_0 36 8.8 58

mds_0 12 9.6 268

proj_3 95 9.6 19

prxy_0 3 7.2 242

rsrch_0 9 9.6 129

src1_0 56 43.2 49

src2_1 98 59.2 50

usr_0 40 22.8 98

wdev_0 20 9.2 162

web_1 54 29.6 67

YCSB [123] YCSB_B 99 65.7 13

YCSB_D 99 62 14

Slacker [124] jenkins 94 33.4 615

postgres 82 13.3 382

SYSTOR ’17 [125]
LUN0 76 20.4 218

LUN2 73 16 320

LUN3 7 7.7 3127

YCSB RocksDB [126] ssd-00 91 90 5

ssd-10 99 11.5 2

To evaluate Venice under real-world scenarios, where multiple

workloads access the same SSD, we create mixed workloads by

combining two or three independent storage workloads. Table 3

shows six mixed workloads and their different characteristics.

Mixed workloads usually have a higher intensity of I/O requests

(i.e., lower inter-request arrival time between I/O requests), which

likely exacerbates the path conflict problem in the SSD.

Table 3: Characteristics of mixed workloads

Mix Constituent
Workloads [122, 123] Description Avg. Inter-request

Arrival Time (𝜇s)
mix1 src2_1 and proj_3 Both workloads are read-intensive 5.8

mix2 src2_1, proj_3 and YCSB_D All three workloads are read-intensive 8.4

mix3 prxy_0 and rsrch_0 Both workloads are write-intensive 93

mix4 prxy_0, rsrch_0 and mds_0 All three workloads are write-intensive 56

mix5 prxy_0 and src2_1

prxy_0 is write-intensive and

src2_1 is read-intensive

5

mix6 prxy_0, src2_1 and usr_0

prxy_0 is write-intensive,

src2_1 is read-intensive and

usr_0 has 60% writes and 40% reads

3

Metrics. To compare Venice with prior systems, we report the

following metrics in our experimental results (see §6) for each

workload: 1) performance in terms of speedup in overall execution

time over Baseline SSD, 2) SSD throughput in IOPS (i.e., number of

I/O operations per second), 3) tail latency in the 99th percentile of

I/O requests, 4) SSD power/energy consumption, and 5) power and

area overheads.

6 Evaluation
6.1 Performance Analysis
Execution Time. Figures 9(a) and 9(b) show the performance im-

provement of pSSD, pnSSD, NoSSD, Venice and path-conflict-free

SSD over Baseline SSD in terms of speedup in overall execution

time of each workload in a performance-optimized SSD and a cost-

optimized SSD, respectively.

We make three key observations. First, Venice consistently out-

performs all the prior approaches across all workloads in both

SSD configurations. In the performance-optimized SSD configu-

ration, Venice outperforms Baseline SSD/pSSD/pnSSD/NoSSD by

an average of 2.65×/2.10×/2.00×/1.92× across all workloads. In

the cost-optimized SSD configuration, Venice shows an average

performance speedup of 1.67×/1.52×/1.55×/1.47× over Baseline
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Figure 9: Performance of pSSD, pnSSD, NoSSD, Venice and path-conflict-free SSD on performance-optimized (top) and cost-
optimized (bottom) SSD configurations. Performance is shown in terms of speedup in overall execution time over Baseline
SSD.
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Figure 10: SSD Throughput of Baseline SSD, pSSD, pnSSD, NoSSD and Venice on performance-optimized (top) and cost-
optimized (bottom) SSD configurations. Throughput values (in IOPS) are normalized to the path-conflict-free SSD.

SSD/pSSD/pnSSD/NoSSD. Second, Venice results in higher perfor-

mance improvements in the performance-optimized SSD configu-

ration. This is because the performance-optimized SSD uses fast

flash chips (with significantly lower read/write latencies), and thus

the I/O data transfer time within the SSD dominates the I/O ser-

vice time. As a result, improving I/O data transfer performance in

the performance-optimized SSD provides a higher improvement in

workload execution time. Third, Venice performs within 45% and

25% of the path-conflict-free SSD in the performance-optimized

and cost-optimized SSD configuration, respectively. We conclude

that Venice significantly improves workload execution time by

mitigating the path conflict problem in modern SSDs.

SSD Throughput. Figures 10(a) and 10(b) show the SSD through-

put (in IOPS) of Baseline SSD, pSSD, pnSSD, NoSSD and Venice in a

performance-optimized SSD and cost-optimized SSD, respectively.

We normalize the SSD throughput results to the path-conflict-free

SSD’s throughput.

We make two key observations. First, Venice improves

SSD throughput over Baseline SSD/pSSD/pnSSD/NoSSD by

176%/120%/113%/102% in the performance-optimized SSD and

76%/58%/61%/51% in the cost-optimized SSD configuration. Sec-

ond, Venice’s SSD throughput is within 30% and 10% of the path-

conflict-free SSD’s throughput in the performance-optimized and

cost-optimized SSD configuration, respectively. We conclude that

Venice significantly improves SSD throughput by mitigating the

path conflict problem.

Tail Latency. Path conflicts can cause some I/O requests to expe-

rience significantly long access latencies. Figures 11(a) and 11(b)

show the 99th percentile of I/O request latencies (i.e., tail latency)

in the path-conflict-free SSD, Venice, NoSSD, pnSSD, pSSD and

Baseline SSD in the form of a cumulative density function (CDF)

for two representative workloads src1_0 and hm_0, respectively.
We use only the performance-optimized SSD configuration for this

experiment. We make the key observation that Venice significantly

reduces the tail latency compared to prior systems. For src1_0,
Venice reduces the tail latency by 32%/31%/30%/27% over Baseline

SSD/pSSD/pnSSD/NoSSD. For hm_0, Venice reduces the tail latency
by 22%/21%/18%/17% over Baseline SSD/pSSD/pnSSD/NoSSD.

Figure 11: Comparison of tail latencies in the 99th percentile
of I/O requests from two workloads, src1_0 and hm_0, on a
performance-optimized SSD.

6.2 Mixed Workloads
To evaluate the effectiveness of Venice at improving SSD perfor-

mance in real-world scenarios where multiple workloads access the

SSD, we compare SSD performance using different systems under

six mixed workloads. Figure 12 shows the speedup of pSSD, pnSSD,

NoSSD, Venice and path-conflict-free SSD over Baseline SSD for

six mixed workloads. We report results only for the performance-

optimized SSD configuration.
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Figure 12: Performance comparison formixedworkloads on
a performance-optimized SSD. Performance is measured in
terms of speedup in overall execution time of each mixed
workload over the Baseline SSD.

We make two key observations. First, across all mixed work-

loads, Venice improves performance over prior works. Venice pro-

vides an average speedup of 1.83×/1.81×/1.80×/1.63× over Baseline
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SSD/pSSD/pnSSD/NoSSD. Second, Venice’s performance improve-

ment is higher in mix6. In mix6, the average inter-request arrival
time is 90% lower than its constituent workloads, leading to in-

creased path conflicts in Baseline SSD. Venice is able to schedule

I/O requests on conflict-free paths using its non-minimal fully-

adaptive routing algorithm. We conclude that Venice outperforms

prior approaches on high-intensity mixed workloads by effectively

mitigating path conflicts.

6.3 Path Conflict Analysis
To show the effectiveness of Venice at mitigating the path con-

flict problem, we measure the percentage of I/O requests in each

workload that experience path conflicts using different systems. Fig-

ure 13 shows the results for the Baseline SSD, pSSD, pnSSD, NoSSD

and Venice in the performance-optimized SSD configuration.

We make the key observation that Venice significantly miti-

gates the path conflict problem. Our experimental results show

that Venice provides conflict-free paths (on the first try) for

99.98% of I/O requests, on average, across all workloads, while

Baseline SSD/pSSD/pnSSD/NoSSD provides conflict-free paths for

76.40%/78.47%/77.88%/80.65% of I/O requests. For a small number of

I/O requests (i.e., 0.02% of I/O requests, on average), Venice fails to

find conflict-free paths on the first try, and thus, the corresponding

I/O requests should wait for a longer amount of time until Venice

successfully reserves conflict-free paths. Venice’s path reservation

process can fail due to two major reasons. First, if all flash con-

trollers are busy processing ongoing I/O requests, Venice cannot

start the path reservation process for a new I/O request until a

flash controller becomes idle. Second, during the path reservation

process, a scout packet (see §4.2) cannot reserve a path if all the

links leading to the destination flash chip are reserved. We conclude

that Venice effectively eliminates the path conflict problem via path

reservation and effective utilization of path diversity in the SSD

interconnection network.

6.4 Power and Energy Consumption
We study the impact of Venice and prior approaches on the SSD

power and energy consumption.

Average SSD Power Consumption. Figure 14(a) shows the aver-
age power consumption for pSSD, pnSSD, NoSSD and Venice on

a performance-optimized SSD configuration. Average power con-

sumption values are normalized to the average power consumption

of the Baseline SSD. We make four key observations. First, Venice

reduces SSD average power consumption by 4% compared to the

Baseline SSD. This is mainly because a link in the interconnection

network consumes significantly lower power than the shared chan-

nel (see §6.6). Second, Venice consumes slightly less power (around

1%) than NoSSD due to Venice’s simple router design. Third, the

impact of Venice and prior systems on SSD power consumption

is small since the SSD power consumption is dominated by flash

operations (i.e., read, program, and erase). The number of flash

operations remains the same in Venice and all prior systems.

SSD Energy Consumption. To calculate the energy consumption

of Venice and prior approaches, we multiply the average power

consumption by the overall execution time of each workload. Fig-

ure 14(b) shows the energy consumption for pSSD, pnSSD, NoSSD

and Venice on a performance-optimized SSD configuration. Energy

consumption values are normalized to the Baseline SSD.

We make the key observation that Venice has significantly

lower energy consumption than prior approaches across all work-

loads. Venice reduces energy consumption by an average of

61%/54%/53%/46% compared to Baseline SSD/pSSD/pnSSD/NoSSD.

We conclude that Venice’s lower average power consumption and

lower execution time together result in largely lower energy con-

sumption compared to prior systems.

6.5 Sensitivity to Interconnection Network
Configurations

We study the effect of the interconnection network configuration

on Venice’s performance improvement. To this end, we compare

the performance of Venice and prior works using three systems

that use 4, 8, and 16 flash controllers in the performance-optimized

SSD configuration. We keep the total number of flash chips in the

SSD constant across the three systems. Figure 15 shows the average

speedup of pSSD, NoSSD, Venice, and path-conflict-free SSD over

the Baseline SSD, across all workloads. The X-axis shows three

systems, 4×16, 8×8, and 16×4. 4×16, for example, denotes four flash

controllers with 16 flash chips in each row of the flash array.
6

We make two key observations from our sensitivity analysis.

First, Venice provides significant speedup over prior approaches

across all three systems with different numbers of flash controllers.

Venice outperforms Baseline SSD/pSSD/NoSSD by 1) 2×/1.7×/1.5×

6
Note that we omit pnSSD from this study because pnSSD requires an N×N flash

array configuration where N is the number of flash controllers as well as the number

of flash chips in each row in the flash array. Hence, 4×16 and 16×4 configurations are
not supported by pnSSD.
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Figure 14: Power consumption (top) and energy consumption (bottom) for pSSD, pnSSD,NoSSD andVenice on the performance-
optimized SSD configuration. Power and energy consumption values are normalized to the Baseline SSD.

in 4×16, 2) 2.6×/2×/1.9× in 8×8, and 3) 1.9×/1.8×/1.7× in 16×4. Sec-
ond, Venice’s performance improvement is higher for the 8×8 flash
array configuration compared to both 4×16 and 16×4 configura-
tions. In the system with 4 flash controllers, Venice can reserve

conflict-free paths for up to four ongoing I/O requests. Venice can

reserve conflict-free paths for up to eight I/O requests in the sys-

tem with 8 flash controllers. As a result, Venice has a lower ability

to eliminate the path conflict problem in the system with 4 flash

controllers, which results in lower performance improvements for

Venice. On the other hand, the system with 16 flash controllers has

a lower number of path conflicts compared to systems with 4 and

8 flash controllers, and thus, Venice provides lower performance

improvement compared to those in the other two systems. We

conclude that Venice is effective for different SSD interconnection

network configurations.
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Figure 15: Performance speedup of pSSD, NoSSD, Venice and
path-conflict-free SSD in the performance-optimized SSD
configuration. The X-axis shows three systems with 4, 8 and
16 flash controllers respectively. For example, 4×16 denotes
4 flash controllers and 16 flash chips connected in each row
of the flash array. The speedup in overall execution time
over Baseline SSD is averaged across all workloads.

6.6 Power and Area Overhead Analysis
Power. As discussed in §6.4, Venice reduces average power and

energy consumption. This section studies the power consumption

of Venice’s interconnection network router and links. We analyze

the power consumption of the router by implementing its hard-

ware description language (HDL) model and synthesizing it for the

UMC 65nm technology node [120]. We observe that each router

consumes 0.241 mW. We measure the power consumption of each

network link using ORION 3.0 [121] power model tool and observe

that each link consumes about 1.08 mW for a 4KB NAND flash

page transfer, which is 90% less power consumption than that of

a shared channel bus. Each network link consumes significantly

lower power than a shared channel bus due to its lower capacitance

load. Link capacitance is lower than bus capacitance since (1) it is

shorter and thinner than a shared bus and (2) it has only two drivers

compared to several (e.g., 8 in an 8×8 flash array configuration)

drivers in a shared bus. Table 4 (3rd column) summarizes the power

consumption of Venice’s components. We have already observed

in §6.4 that Venice reduces the average power consumption by 4%

over Baseline SSD.

Table 4: Power and area overheads of Venice

Component # of Instances Avg. Power [𝑚𝑊 ]
for 4KB page transfer Area

Router 1 per flash node 0.241 8% of flash chip area

Link Up to 4 per flash node 1.08 0.04× flash channel area

Area. Venice does not impose area overhead on NAND flash chip

design as it does not integrate the router inside the NAND flash chip

(i.e., no pins are added to the commodity flash chips). Router chips

and the links connecting them can impose area overhead on SSD

printed circuit board (PCB) design. To estimate this overhead, we

model the area overhead of the interconnection network’s routers

and links.

We estimate the area overhead of Venice’s routers using the HDL

model of the router. Each router in Venice has an area of 614 𝜇𝑚2
.

However, each router occupies a higher area on the PCB due to its

I/O pad overheads. Each router has 40 I/O pins. Considering I/O

pad sizes (about 0.2 mm) and the safety distance between two I/O

pads (about 0.2 mm), we expect that each router occupies about 8

𝑚𝑚2
, which is 8% of a typical 100𝑚𝑚2

NAND flash chip [127].

We estimate the area overhead of Venice’s links using ORION

3.0 [121]. Assuming an 8×8 2Dmesh topology connecting 64 NAND

flash chips, Venice requires 112 network links (instead of the eight

shared channels required in the baseline). Note that we do not

count injection/ejection links as they are the same as flash chips’

connectors to the shared channel bus. Our experimental results

show that each link’s area is roughly 0.04× of the shared channel
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area. As a result, in total, Venice’s interconnect links occupy 44%

lower area compared to the baseline multi-channel shared bus

architecture.
7
A network link occupies significantly smaller space

than a bus for two main reasons. First, links are shorter than buses

(e.g., by 8× in our case); thus, link wires can be 8× thinner to ensure

the same impedance as the bus. Second, as the link wires are thinner,

they require lower pitch sizes, reducing the overall area required by

the links. We summarize the area overhead of Venice’s components

in Table 4 (4th column). We conclude that Venice’s benefits come

at relatively low area overhead.

7 Related Work
To our knowledge, Venice is the first work that fundamentally ad-

dresses the path conflict problem in SSDs at low cost. We have

quantitatively compared Venice extensively to three major prior

works, pSSD [15], pnSSD [15] and NoSSD [7, 38] in §6. In this sec-

tion, we briefly review related work in two domains: 1) improving

flash array parallelism, and 2) exploiting flash array parallelism.

Improving Flash Array Parallelism. Prior works propose to em-

ploy an interconnection network inside the SSD (e.g., [7, 15, 38, 89,

128–130]). HyperLink NAND flash architecture (HLNAND) [128–

130] connects the flash chips using a ring-topology interconnection

network. Decoupled SSD [89] proposes an on-chip router within

each flash controller to create a network of flash controllers in the

SSD. Unfortunately, both HLNAND and Decoupled SSD do not pro-
vide rich path diversity between the flash controllers and flash chips,

and thus, cannot effectively mitigate the path conflict problem.

Exploiting FlashArray Parallelism.Other prior works (e.g., [11,
12, 23, 39, 40, 42–45, 131]) attempt to exploit the internal parallelism

in an SSD to improve the SSD performance. These works mainly

focus on I/O scheduling. Jung et al. [40] propose Physically Ad-

dressed Queueing (PAQ), an I/O scheduler implemented in a layer

between the FTL and the flash array. PAQ selects groups of opera-

tions that can be simultaneously executed without contention for

a shared resource (e.g., flash channel). Gao et al. [11, 12] propose

Parallel Issue Queuing (PIQ), a host I/O scheduler that batches I/O

requests that use different flash channels to be scheduled simulta-

neously to exploit SSD-level parallelism. FLIN [23] provides both

high-performance and fair I/O scheduling in modern SSDs. We

believe Venice is orthogonal to these works and I/O scheduling for

the Venice architecture is an interesting research direction.

Several prior works [9, 14, 39, 41, 132–134] propose techniques

to exploit flash array parallelism by focusing on physical page allo-

cation in the FTL. Unfortunately, these works fail to effectively lay

out data such that SSD does not experience the path conflict prob-

lem. This is due to 1) random data access patterns in SSDs, 2) I/O

interference from multiple concurrent applications, and 3) dynamic

changes in device conditions.

8 Discussion
We propose Venice to improve SSD performance by mitigating the

path conflict problem in SSDs. Venice can be extended to improve

7
We measure the total area overhead of Venice’s interconnect links compared to a

baseline multi-channel shared bus architecture using this equation:

1 - (total area of interconnection network links) / (total area of channels in multi-

channel shared bus architecture), i.e., 1 - (#Links × 𝐿𝑖𝑛𝑘𝑎𝑟𝑒𝑎 ) / (#Channels ×
𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑎𝑟𝑒𝑎 ) = 1 - (112 × 0.04) / (8 × 1) = 0.44.

SSD and system performance in other ways. We discuss other use

cases of Venice in this section.

Applicability of Venice to Near-Data Processing (NDP). NDP
is a computing paradigm that moves the computation closer to

where the data resides (e.g., [2, 24, 25, 135–160]). Venice’s improved

parallelism can facilitate NDP inside the SSD by efficiently co-

locating different operands required by the NDP operations. Prior

proposals [24, 139] that perform in-flash bulk bitwise operations

have data location constraints where the operands must be moved

to a single flash chip before the computation is performed. Path

conflicts can impact this data movement, which can significantly

reduce the performance benefits of in-flash processing. Venice can

leverage its improved flash-array parallelism to efficiently gather

operand data from different flash chips to the target flash chip that

performs the NDP computation.

ImprovingGarbage Collection. The garbage collection (GC) pro-
cess [6, 19, 22, 27, 46, 57, 81–85] in NAND flash-based systems is

critical to reduce fragmentation and maintain free blocks for write

operations. During GC, the SSD controller reads a large number

of valid pages from victim blocks. These pages are written to new

blocks in the same flash chip or a different flash chip. This data

movement can interfere with I/O requests [15, 23, 57, 85, 89, 161–

163] and cause path conflicts. Venice can leverage its improved

path diversity to efficiently schedule both host I/O requests and

GC-related requests in parallel.

9 Conclusion
We propose Venice, a new mechanism that introduces a low-cost

interconnection network of flash chips and utilizes the path diver-

sity efficiently to fundamentally address the path conflict problem

in SSDs. Venice mitigates path conflicts and improves SSD paral-

lelism using three key techniques: (1) a simple router chip placed

next to each flash chip without modifying the flash chip itself, (2)

a path reservation technique to reserve a path for each I/O re-

quest from the SSD controller to the target flash chip, and (3) a

non-minimal fully-adaptive routing algorithm to effectively utilize

the path diversity in the interconnection network. Our evaluation

shows that Venice significantly improves performance over state-

of-the-art prior approaches on both performance-optimized and

cost-optimized SSD configurations for a wide range of real-world

data-intensive workloads, by effectively eliminating path conflicts.

As the demand for performance and scalability of SSDs increases,

we hope that Venice inspires future work in several directions to

mitigate path conflicts and improve parallelism within the SSD.
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