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Abstract—Solid-State Drives (SSDs) involve a complex set of
management activities in the background, resulting in unpre-
dictable delays and occasional extended access latencies. However,
there is an increasing demand for ”deterministic” access latency
in a growing number of scenarios. This cemand has prompted
a new feature in the NVMe storage access protocol called
Predictable Latency Mode (PLM), which provides a way to tighten
tail latency in SSDs. This paper presents the first study of the
PLM feature in a single-host environment and its extension to
multi-host settings. We propose a PLM Coordinator (PLMC) that
regulates access to the PLM of a shared SSD device based on the
hosts’ traffic characteristics. Our simulation experiments show
that the proposed PLMC with a simple traffic prediction can
achieve 31% improvement than without a coordinator on the
90%-tail latency values.

I. INTRODUCTION

The ongoing replacement of hard drives (HDDs) by solid-
state drives (SSDs) with NVMe (Non-Volatile Memory Ex-
press) interface in the enterprise has enabled much higher
performance and lower end-to-end storage latencies [1]–[4].
However, the tail latency in current SSDs can range up to
several milliseconds. For example, the latency distribution of
a recent Intel NAND SSD device (Intel DC P4610 SSD)

Fig. 1: Latency Distribution for Intel
DC P4610 SSD

with a workload of 70%-
read and 30%-write 4KB re-
quests experience more than
1 ms 99% tail latency as
shown in Fig. 1 due to
different background opera-
tions (see section II-A) and
their interference with I/O
accesses1 [5]. Popular applications such as streaming applica-
tions, social media platforms, financial transactions require not
only a low average access latency but also a short tail latency
so that the access latency does not vary substantially from
transaction to transaction [6]. Thus, tightly controlling the tail
latency is essential for emerging storage systems [7]–[9]. Fur-
thermore, high variability in storage access latency makes the
resource allocations challenging when multiple applications
with different quality of service (QoS) requirements share a
storage volume.

The NVMe 1.4 specification (NVMe v1.4) standard intro-
duces the predictable latency mode (PLM) [10] feature for

1This figure is only for illustration; our experimental setups don’t use this
SSD and the workload is different too.

NVMe SSDs to achieve deterministic latency. The PLM fea-
ture is based on the concept of deterministic window or DTWin
and non-deterministic window or NDWin modes. During the
DTWin mode, the storage access latency is made deterministic
by avoiding background activities, which are deferred until the
SSD goes into NDWin mode. The DTWin mode is realized
by the limited DTWin budget (explained in sec II-B). A
careful DTWin budget allocation becomes critical if (a) several
applications, with different QoS classes, have tight tail-latency
requirements and thus need to take advantage of the PLM, and
(b) the data accessed by these applications are located on the
same SSD. In case all these workloads are running on the
same host, the host itself can regulate its share of the DTWin
budget. However, when the workloads run on different hosts,
more complex coordination is required. Typical data center en-
vironment concentrates storage in a small number of “storage
servers” which are accessed by all the hosts; therefore, the
scenario of multiple hosts accessing data on the same SSD is
common and is likely to increase as SSD sizes move from the
current few TB to few tens of TB. Typical examples of such
shared access include traditional databases, semi-structured
key-value stores, or document stores containing documents,
images, videos, etc. Low read latency is one of the significant
challenges to achieve for these applications. This challenge is
the primary motivation for extending the existing PLM feature
to a multi-host environment where several workloads compete
to execute within a limited DTWin budget.

The existing PLM mechanism, as currently defined, focuses
only on serving the reads, and hence this paper is also focused
on the reads. It calls for buffering all writes that arrive during
a DTWin period in an NVRAM device (intended to be internal
to the SSD but could also be external) and flush them to the
SSD during the NDWin period. Thus while writes are very
important to the overall PLM scheme, they are out of scope
for this paper and will be addressed in future works.

To the best of our knowledge, there is no other comparable
mechanism in the literature at this point. Specifically our
contributions are as follows:
• Simulating PLM feature: Since the PLM capability is very

new and still not available in any commercial SSDs, we need
to lean on simulation to examine PLM performance. For
this, we have modified MQSim [11], which is a comprehen-
sive and validated model of NVMe and SATA-based SSD.
This modification provides a capability that the research
community can use to study the PLM feature further.



• Extending PLM feature: The PLM feature is currently
defined only for a single host achieving deterministic IO
latency. In this paper, we extend it to multiple hosts sharing
an SSD by defining a PLM Coordinator (PLMC) that
interacts with the hosts and allocates a suitable DTWin
budget to each. The PLMC resembles any other NVMe
host and thus does not require any changes to the existing
protocols.

• PLMC Evaluation: The proposed PLMC predicts traffic of
different classes and uses it to allocate the DTWin ”counts.”
We show that this mechanism can achieve up to 31%
improvement in serving the highest QoS class compared
to performing the same application without a coordinator,
despite very high burstiness of the traffic.
The outline of the paper is as follows. Section II provides

an in-depth discussion of the PLM feature as specified in
NVMe1.4, and its limitations along with the the motivation
behind the proposed PLMC. Section III discusses the detailed
design of PLMC. Section IV provides our simulation and
emulation results. Finally, section V concludes the discussion.

II. PLM MECHANISM AND ITS DEFICIENCIES

A. SSD Structure, Background Activities and Access

The NVM storage model defines several
concepts including NVM subsystem, domain,
endurance group, NVM-sets and namespaces, as

Fig. 2: NVM Storage Hier-
archy

illustrated in Fig 2. An NVM sub-
system is an integrated collection of
one or more NVMe controllers, one
or more interface ports and may con-
tain non-volatile storage and hence
an SSD can be considered as an
NVM subsystem. An NVM subsys-
tem may consist of single or multi-
ple domain(s), which is the smallest
indivisible unit that shares states(for
example: power state, capacity information). An endurance
group is a collection of NVM-Sets, which consist of one
or an array of namespaces. Each endurance group is an
organizational construct for wear leveling purposes.

SSDs internally involve complex management activities that
are performed largely in the background by the firmware
known as Flash Translation Layer (FTL) [12], [13]. The
primary role of FTL is to hide the complexities of erasure op-
eration [14], out-of-place writes [15], address translation [16],
[17], wear-leveling [18], [19], and garbage collection [11],
[20]–[22]. These activities and their interference with normal
read/write operations can extend the access latency from its
nominal value (<100 µs) into several milliseconds [23], [24].
Fig. 1 shows 99% latency can exceed 1 ms.

The SSD can be accessed by a host locally as well as
remotely. For remote access, a protocol called NVMe-oF
(NVMe over fabric) has been defined that essentially extends
the NVMe commands to be ported from host to the target and
executed remotely [25], [26].

B. PLM Feature and Its Functioning

The PLM is enabled at NVM-set granularity and, therefore,
NVM-set cycles between the aforementioned DTWin and
NDWin time windows, such that all background activities
are concentrated only during NDWin period. The DTWin
budget is defined by two attributes: (a) a predefined time
limit and (b) a predefined limit on the number of the read
and write operations that can be performed on an NVM-set.
The NVM-set may transition to NDWin if either of these limits
is exceeded. There are various DTWin attributes introduced in
NVMe v1.4 such as DTWin read typical(CRD), DTWin Write
typical(CWR), DTWin time maximum(TDW ). The CRD and
CWR are collectively considered as DTWin ”counts” (DC) in
this paper. DC and TDW are regarded as the DTWin budget.
The PLM feature is currently designed primarily to cater to

Fig. 3: PLM Mechanism
reads since the latencies for reads are generally more critical
than for writes. To achieve the deterministic latency, the host
needs to obey the predictable latency operating rules. As stated
earlier, to provide continuous access to DTWin mode to an
application, we need multiple (two or more) different NVM-
sets that are identical and contain copies of the data. By
ensuring that all NVM-sets copies are never in the NDWin
state simultaneously, an application can continuously read data
in the DTWin mode from one of the NVM-set copies as
depicted in Fig 3. The NVM-set may transition to the NDWin
before exhausting its DTWin budget – this happens if there is
an emergency management operation required The amount of
time spent by the NVM-set in NDWin state depends on the
necessary background operations for management activity.2

Fig. 4: NVM-set “log-page” access
by a remote host

The Fig 4 represents how a
remote host can communicate
to an NVMe controller to
exploit the PLM feature. The
NVMe controller posts the
DTWin related status for each
NVM-set into a “log-page” of
the NVM set accessible to the
host using NVMe commands.
NVMe controller advertises
those “log-page” changes
to the host. PLM’s current
specification puts the regular
transition control with the host and the forced transition by
the NVMe controller (if the host does not respect operating
rules).

2Note that the duplication is needed only for the data accesses that must be
deterministic; one copy suffices for all other data. Also, if multiple copies are
maintained for resilience reasons, they can be used to provide deterministic
service as well. RAID1 type SSD arrangement is somewhat different and
based on the ongoing background operation on SSDs.
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The host defines the beginning of DTWin and NDWin
periods by making requests to the NVMe controller using
“set-feature” command. Since a host could use multiple NVM-
sets simultaneously, they could be at different points in their
DTWin/NDWin cycles. Therefore, the host must influence
DTWin/NDWin duration to synchronize multiple copies of
NVM-sets. SSDs internally involves complex management
activities that are performed largely in the background by
the firmware known as Flash Translation Layer (FTL) [12],
[13]. The primary role of FTL is to hide the complexities
of erasure operation [14], out-of-place writes [15], address
translation [16], [17], wear-leveling [18], [19], and garbage
collection [11], [20]–[22]. These activities and their inter-
ference with normal read/write operations can extend the
access latency from its nominal value (<100 µs) into several
milliseconds [23], [24]. Fig. 1 shows 99% latency can exceed 1
ms. Inefficient management could also reduce the endurance,
i.e., the number of program-erase cycles that the SSD can
endure [15], [27]–[30].

The SSD can be accessed by a host locally as well as
remotely. For remote access, a protocol called NVMe-oF
(NVMe over fabric) has been defined that essentially extends
the NVMe commands to be ported from host to the target and
executed remotely [25], [26].

C. Issues with PLM Feature in a Multi-host Environment

We now study the issues of the PLM feature in a multi-host
environment. To illustrate this, we have created a mixture of

Fig. 5: Mixture of Workloads with
different Priorities; Blue: High
QoS, Red: Medium QoS, Green:
Low QoS

three different priority
workloads of different QoS
classes (i.e. high, medium,
and low) considering few IO-
intensive portions from Systor
2017 traces [31], a month-long
virtual desktop infrastructure
(VDI) read-intensive trace.
Fig. 5 shows the read IO
size of all three considered
workloads, which shows a
wide variations.

Fig. 6: Tail Latency in isolation vs
sharing

We now study the im-
pact on latency for high
QoS workloads of Fig. 5
in a shared environment
when multiple workloads
share the same data storage
resources. To do that, we
have simulated PLM in the
MQSim simulator with appropriate modifications (detailed in
Section IV-A). We wanted to observe the PLM contribution
to a workloads’ experienced latency when each workload is
run in isolation and in the shared environment with different
QoS class workloads. In the Fig. 6, we observed that the
high QoS workload obtains 3X times 90% tail latency when
running with medium and low QoS workloads during a span
of 15 minutes. Thus, it gives us the insight to engage a PLMC

that schedules IO requests from different workloads during a
deterministic period such that the QoS requirement is satisfied.

III. PROVIDING DETERMINISTIC SERVICE IN MULTI-HOST
ENVIRONMENT

The current PLM feature does not recognize a multi-host
environment; instead, it assumes that each host will indepen-
dently work with the PLM feature of the target NVMe SSD de-
vice that it is trying to use. In a single host environment, a host
can access an NVM-set via the NVMe controller. This NVMe
controller can incorporate a DC-allocate module that could
help distribute the required DC for different workloads running
on a single host. However, running separate workloads in an
environment of multi-host systems might create a bottleneck
at the NVMe controller. Therefore, the DC-allocate module
needs to be outside of the NVMe controller to coordinate
among different host accesses to control the access latency tail
in a multi-host environment. The proposed PLMC embodies
this functionality.

Fig. 7: Proposed PLMC Architecture

A. Coordinating Multiple Host Accesses Through PLMC

The proposed PLMC is shown in Fig. 7. The PLMC
allocates DC to each of the hosts actively accessing the
NVMe target, consisting of one or more NVM subsystem(s),
i.e SSD(s). Each subsystem can have one or more NVMe
controller that controls a number of NVM-sets. The NVM-
set copies DTWin attributes which are maintained in a log
page on a per NVM-set basis. The log page can be accessed
via the corresponding NVMe controller. The PLMC uses the
conventional NVMe-OF (NVMe over fabric) protocol [25],
[26] to communicates to NVMe controller(s) and accesses
each NVM-sets’ log-page to collect DTWin attributes. The
PLMC is not involved in the data path for scalability reasons
and does not directly monitor IOs. Instead, each host is trusted
to accurately convey its usage to the PLM coordinator and
abide by its limits. On its end, the PLMC should learn the
needs of the workloads run by each host and supply the DC
accordingly. Therefore, the active hosts can communicate with
PLMC via message passing to provide for their needs. The
PLMC considers the traffic characteristics experienced by each
of the hosts and the available DC of an NVM-set to distribute
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the DC among hosts. Moreover, the PLMC’s DC allocation
mechanism can consider the QoS classes of the host. The host,
with the allocated DC, can perform remote IO operations via
the NVMe-oF protocol.

The storage server forms an ideal place for PLMC to live.
All hosts with similar traffic characteristics will experience
the same underlying device access latency in the absence
of management operations; therefore, the difference will be
mostly in tail latency. Note that the latency of concern here
is simply the device access latency. The end-to-end latency
will consist of at least four components: (a) host-side IO
dispatching and IO completion latency, (b) network transit
latency, (c) NVMe queuing and queue handling latency, and
(d) device access latency. QoS classes’ definition is most
meaningful in terms of the end-to-end latency, and thus control
over the overall tail latency needs to consider all these four
components. It would require decomposing the end-to-end tail
latency into its constituent elements and managing each part
suitably. However, this paper is only focused on (d).

PLMC supports multiple application classes based on the
tail latency requirement. It is intended to be lightweight and
can gracefully handle the uncertainties in IO accesses and the
NDWin state’s transition. To obtain deterministic latency, a
host needs to access the device during DTWin while respecting
DTWin attribute values. We assume that each host requests
allocation of DC from PLMC at the start of DTWin and the
allocated DC’s do not change during the window. If the host
receives fewer than the required counts, it can request PLMC
for additional DC allocation. Several DC allocation policies
(incorporated in the PLMC) for several real-world storage
traces are studied in this paper.

B. Host Traffic Estimation by PLMC

The PLMC’s primary role is to estimate or receive the DT
count needs of each of the participating hosts and make the
DC allocation accordingly. As stated earlier, storage server is
a suitable place for PLMC; it is also possible to locate it at the
host side, acting as one of the requesting hosts for the shared
NVMe set. For fault-tolerance purposes, the PLM host can be
dynamic using standard leader election algorithms [32], which
we do not focus upon in this paper.

The key parameter required by PLMC is an estimate of
the DTWin count (DC) allocated to each host for the next DT
window. We have found the storage traffic to be generally quite
irregular and nonstationary. Since the well-known time-series
prediction methods such as Kalman Filter, ARMA models,
etc. assume at least quasi-stationarity, they were not helpful.
We used a simple exponential smoothing-based prediction.
Though accurate traffic prediction can enhance PLMC’s per-
formance, studying traffic prediction is not our concern in this
manuscript. However, our interest is to show how PLMC can
exploit a simple traffic prediction. We will comment on this
aspect in section IV.

Let R(m)
j (n) denote the measured request count (traffic) at

the n-th scheduling period for the j-th class and R(p)
j (n) their

smoothed estimated in the same period, with 0 < ζ < 1 as
the smoothing constant. Then,

R(p)
j (n+ 1) = ζR(m)

j (n) + (1− ζ)R(p)
j (n) (1)

C. Deterministic Count Allocations by PLMC

As stated above, PLMC uses a simple exponential
smoothing-based estimation of DC required by each host,
which we call Coordinator Initiated Prediction. It is also
possible to make a host-based prediction and convey those to
PLMC. The hosts may have better estimates of the traffic, and
thus their estimation may be preferred. However, the quality
of the estimation may vary. We can count precisely how many
requests will happen in the next window for our trace-based
experiments and supply that to PLMC. Thus, the sole purpose
of host-based prediction is to use it as a baseline to determine
how much better the allocation policy can do if we knew the
exact DC requirements in every DTWin period.

TABLE I: Notation
Symbol Explanation
W (n) Actual duration of nth scheduling Window.
Wd(n) Actual duration of nth deterministic Window, which can be less

than or equal to TDW at nth window
Wnd(n) Actual duration of nth non-deterministic Window such that

TNDWL ≤ Wnd(n) ≤ TNDWL

C Available DT Count for the device, which is as same as CRD

Cres(n) Residual DCs after minimum allocation to all classes during
Wd(n)

Cmin
j Required minimum DC for j-th class

Cused
j (n) Consumed DC for j-th class during Wd(n)

Calloc
j (n) Allocated DC for j-th class during Wd(n)

Dmin
j Minimum required allocation for class j

φj(n) Allocation of excess DC to class j (under strict priority or fixed
ratio policies)

L
(m)
j (n) Tail Latency measured for j-th class during W (n)

Ld Latency of 4KB IO in a DT period
Lnd Latency of 4KB IO in a ND period
rj Fixed ratio for j-th class to assign the residue DC
R(m)

j (n) Measured Traffic (#IOs/DT-period) for j-th class during W (n)

R(p)
j (n) Predicted Traffic (#IOs/DT-period) for j-th class during W (n)

TDW Maximum Deterministic Window Timeperiod
uj(n) Allocated DC utilization for j-th class during W (n)
vj(n) Deficiency of DC during W (n)

Let us consider k hosts each running workloads of different
QoS classes, denoted as Q1, Q2, ..., Qk, with tail latency
requirement of Li for class Qi. Also, let’s consider p copies of
NVM-sets S1, S2, ..., Sp. In the following we use the index n
to denote the n-th window DT/ND window. The n-th DTWin
is of duration Wd(n), followed by an NDWin of duration
Wnd(n). We define the total duration of these as the scheduling
period and denote it as W (n). We can infer,

W (n) =Wd(n) +Wnd(n), for n = 0, 1, ... (2)

The complete set of notations are given in Table I. The
maximum duration of Wd(n) is TDW (n) – the specified period
(100ms or 400ms in our experiments); however, if all of the
available DCs are exhausted early, i.e. Wd(n) ≤ TDW , the
window also ends prematurely. The premature end of the
window would include the service of all the requests arriving
during the window. The duration of the non-deterministic
period depends on the write request behavior during the
preceding DTWin.
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In each scheduling period, we need to distribute the total
DC, C (as same as CRD), among the k hosts such that the
corresponding target latency requirement is met and no counts
are wasted (i.e., reserved for a host that does not use them). In
particular, the allocation of DCs should consider the following
three aspects:

Definition 1 (Utilization): The utilization of a host is
defined by the ratio between the number of DCs consumed vs.
allocated. The utilization of j-th host during W (n) is given
by:

uj(n) = Cused
j (n)

/
Calloc
j (n) (3)

Definition 2 (Deficiency): The deficiency of a host is
defined as the fraction of requests that are not covered by
the allocated DC. The deficiency of j-th host during W (n) is
given by:

vj(n) =

{
Rm

j (n)−Cused
j (n)

Rm
j (n) Rmj (n) > Cused

j (n)

0 Otherwise
(4)

Definition 3 (Tail Latency): The 90% tail latency is
measured for each of the considered host running workload
of individual QoS class. The latency to execute each of these
requests could be deterministic Ld or non-deterministic Lnd.
Therefore, the tail latency, L(m)

j , of the j-th host during W (n)
is defined as

L
(m)
j (n) =

{
Ld for R(m)

j (n) ≤ Calloc
j (n)

Lnd Otherwise
(5)

where Calloc
j (n) denote the DC allocated for the j-th host

during Wd(n).
The Calloc

j (n) can be expressed as follows. If the total
predicted traffic

∑q
j=1R

(p)
j (n) is below C, then we allo-

cate the predicted value directly, i.e., Calloc
j (n) = R(p)

j (n).
Otherwise all the host will get their required minimum DC,
Cmin
j , conveyed to PLMC. The residual DC Cres(n) (i.e.,

the counts remaining after the minimum allocation) can be
distributed among the q hosts based on their workloads’ QoS
class priority; this additional allocation corresponding to host-
j is denoted as φj(n), i.e.

Calloc
j (n) =

{
R(p)
j (n) for

∑q
j=1R

(p)
j (n) ≤ C

Dmin
j + φj(n) Otherwise

(6)

To calculate φj(n), we use the following two methods for
assigning Cres(n) to various QoS classes:
1) Policy I (Strict Priority): The host running highest QoS

class workload is assigned the DC required to match the
predicted traffic for the current window, if Cres(n) is
enough. Otherwise, Cres(n) is allocated to the host running
workloads of next lower class, until we run out of the
counts. (Obviously, the last host to get an allocation may
get less than its full requirement).

2) Policy II Fixed Ratio: Here Cres(n) is split among various
hosts based on a predefined set of ratios rj corresponding
to the different classes of workloads running.

IV. EVALUATION OF THE PROPOSED PLMC

A. Enhancing MQSim Simulator to Support PLMC

The PLM feature is relatively new, and currently, there are
no commercially available SSDs that support it. Consequently,
the only direct way to evaluate PLM capability is to use a
comprehensive simulation model of SSDs supporting PLM.
For this, we built the evaluation capabilities around the ex-
isting MQSim SSD simulation package as described below.
MQSim [11] attempts to build a very detailed and realistic
model of SSDs. It explicitly represents the flash device charac-
teristics and operation, the SSD’s internal architecture, detailed
FTL operations, device-level caching, and host interfacing. It
provides an exact representation of both SATA and NVMe
interfaces, of which we use NVMe differentiated queuing
feature to support different QoS classes.

MQSim simulates nearly all aspects of SSD structure (chips,
dies, planes, blocks, pages), buses (channels and inter-chip/die
buses), and most non deterministic background operations
associated with nonvolatile media (logical to physical address
mapping, page reads, out-of-place page updates, consolidation
of pages, garbage collection, block erasure, wear leveling,
etc.). The developers have validated its performance against
several real SSDs and found them to be very close, with the
response time errors of 11% (average) and 18% maximum.

However, MQSim has some limitations and does not contain
all the features necessary for building the PLM. It does not
support the concept of NVM-sets or other newly proposed
NVMe v1.4 features. Consequently, we embarked upon an
extensive effort to understand the implementation and enhance
it for our needs, as explained below.

In the absence of NVM-sets, PLM emulation would require
multiple SSDs, but MQSim simulates only a single SSD.
It also does not support multiple hosts. For the later, we
assumed that each IO flow defined in MQSim is a host for
our purposes. We emulated multiple devices by virtualizing
the entire address space into logical address ranges pertaining
to the the number of required devices. MQSim also assumes
that the logical address space is divided amongst concurrently
running IO flows (i.e each flow accesses its own address
range). We changed this aspect so that the requests from all
flows are served from the same address range.

Proceeding to the PLM features, we first had to introduce
the notion of IO Determinism by stalling maintenance ac-
tivities and carry them out at a later time (during NDWin
period). MQSim has two triggers for garbage collection (GC):
(a) soft trigger, that periodically looks for blocks with very
few valid pages and maps those pages out, thereby enabling
the block for erasure, and (b) hard trigger, which is initiated
when the number of clean blocks falls below some limit. The
soft-trigger GC can be postponed without any ill effects, but
the hard-trigger cannot. We switched off the soft trigger GC
so that no GC takes place during the normal (and supposedly
DTWin) period and is only triggered during the NDWin period
on command. The hard trigger GC remains untouched as it is
intended for the NDWin period.
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For the DTWin, NDWin, and DC features, we introduced
some parameters set at the start of a simulation run. These
include (a) Maximum DTWin and NDWin period (in nanosec-
onds), after which the SSD will autonomously transition to
the other state, and (b) DC value, from which we allocate
counts to all the hosts. MQSim also does not have a provision
for measuring the tail latency. We have included reporting
90th percentile tail latency experienced by the host when the
DTWin period ends or exhausts all allocated DCs during the
given window).

Simulating NDWin period with actual maintenance opera-
tions (e.g., garbage collection, wear leveling, block consolida-
tion, erasure) is difficult in MQSim; therefore, we emulate
unpredictable delays during NDWin period by introducing
additional latency along with the soft GC which may be
triggered during the NDWin period. This delay is assumed
to follow an exponential distribution.

B. Emulation of PLMC on Real Server

To obtain some real experimental results on the DTWin-
like mechanism using regular SSDs, we use an Intel server
installed with two physical SSDs, Samsung Evo 970 SSD,
so that at least one of them is always in the DTWin mode.
Since it is critical to schedule SSD maintenance operations
only during the NDWin period, we introduce an additional
delay to emulate these operations during the NDWin period.

C. Workloads and Configurations Used
For evaluation, we used the Systor 2017 trace [31], a month-

long virtual desktop infrastructure (VDI) read-intensive trace
TABLE II: Datasets’ Read IO Intensities

DataSet High Medium Low
DS1 420 0.78×High 0.71×High
DS2 480 0.83×High 0.72×High
DS3 165 0.85×High 0.7×High

that consists of
wide variations
of IO sizes. We
combined a few
selected portions
of the original trace to create a variety of workloads with
distinct IO intensities. Table II lists three datasets. Each of
these datasets consists of three workloads with different IO
intensities( reported as average 4KB requests per DTWin in
Table II), considered as three QoS classes as high, medium
and low respectively.

We evaluated several different configurations w.r.t DC and
DTWin period length of the NVM-set for each of these
datasets. A large DTWin reduces interactions between the
hosts and PLMC, reduces overhead, and may reduce burstiness
due to the aggregation effect. However, since DCs are read-
justed only at the beginning of each window, a large window
will reduce the effectiveness of the control.

TABLE III: Configurations used
Config DC TDW

1 1.2×MDC 100 ms
2 1.4×MDC 100 ms
3 2.0×MDC 400 ms
4 2.5×MDC 400 ms

Because of this trade-off,
we have used DC and DTWin
period (TDW ) configurations
as represented in Table III.
Here MDC is the average
number of DC required by all three workloads and is rep-
resented as MDC . We have determined the value of MDC

offline by analyzing the trace. In all cases, the available DC

of an NVM-set at any DTWin period is set above the average
value to handle traffic variability.

D. Evaluation Results

For evaluation, we have considered three hosts running
three workloads of high, medium and low QoS classes. We
evaluate here how DC of two NVM-sets copies (two SSDs)
are distributed amongst three hosts based on the three metrics
considered in Definition 1,2 and 3, namely (DT count) uti-
lization, (DT count) deficiency, and resulting 90% tail latency
respectively.

We used the same set of workloads and other settings
for both simulation and emulation to compare the results.
Our validation runs show that we can achieve agreement
between the simulation and emulation concerning utilization
and deficiency. However, the tail latencies are not comparable
because of numerous differences between the simulation and
emulation platforms. In particular, the simulation model uses
a highly detailed model of a real SSD (along with NVMe
protocol latencies) from several years ago, which we did
not perturb. In contrast, the emulation uses a contemporary,
much lower latency, NVMe SSD. Also, because of the request
tagging difficulties on the real SSD, we could not use different
NVMe queuing priorities in the emulation. Therefore, we will
not compare tail latencies across the two cases.

Fig 8 shows the overall results for dataset1. Similar results
were obtained for datasets 2 and 3 and, therefore, not reported.
The top part of the figure shows results for the emulation
and the bottom portion for the simulation. The three hosts
running three QoS class workloads are represented as ”High”,
”Medium” and ”Low” respectively in the table. We have listed
separate cases for strict Priority and Fixed Ratio in each
case, and under those for coordinator directed (CoD) and
host-directed (HoD) cases. Even though Table III shows four
different configurations, to avoid clutter, we report results only
for configurations 2 and 4. The figure reports on utilization,
deficiency and tail latency measures for High, Medium, and
Low QoS classes, which we discuss next. We generated 10
percentile, 50 percentile (Median), and 90 percentile values
for each measure. However, not all are listed in the figures
for brevity. The reason to choose Median, instead of Mean,
is that it is less affected by occasional large quantities, which
are common due to very bursty nature of the traffic.

Utilization: In Table III we only report 10 percentile
utilization. The others (50 & 90%) are not reported since they
all turn out to be 100% in all the cases! A 100% utilization
indicates that we are not wasting any allocated counts, a sign of
scarce resources. Note that even 10% utilization numbers are
1 for the HoD case because we know exactly what is needed
in this case. The CoD numbers are much lower because the
PLMC does not know the precise needs and therefore has
to be generous in its estimation. The key point to note is an
extremely close agreement across simulation and emulation. In
the table, another interesting piece is the ”Utilization” value
reported for each host over the deterministic windows for strict
priority and fixed ratio, respectively, under CoD and HoD. We
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Fig. 8: Evaluation results for Dataset 1. The tail latency is calculated in microseconds.

Fig. 9: Comparison of Median tail latencies for Dataset 1.

Fig. 10: Comparison of Median tail latencies for Dataset 4.

see a good agreement between the two. This figure shows the
excess DT count allocation resulting from an overestimation
of the traffic results in less than 100% utilization. All three
hosts experience roughly the same utilization level, with the
”Low” dominating slightly. The simple reason behind this is
”Low” allocated less DC compared to the traffic experienced
and hence, used up all DC allocated.

Deficiency: For deficiency, we ignore the 10% values but
show 50% and 90% in Table III. It is seen that the median
deficiencies are rather small: for HoD, we expect them to be
small, but for CoD, they are small since the available counts
are significantly higher than the average. Moreover, there is an
excellent agreement between emulation and simulation results
reported in the table. As expected, the 90% numbers are
much more variable, and the agreement between emulation and
simulation is somewhat worse but still quite good overall. It is
worth noting that both emulation and simulation data are based
on about 9000 DT Windows for configuration 2 (and 2250 for
configuration 4), which means that 90 percentile values are
expected to be rather variable.

Tail Latency: For latency as well, we report 50% and
90% values for 90% Tail Latency. We computed the 90%
Tail Latency during each DTWin and then reported the top
50%, and 90% values experienced during the entire workload.

As stated before, the latencies are not comparable across
emulation and simulation, and we shall not attempt to do
so. Also, since the simulation model is far more granular
here, we subsequently comment only on simulation results.
The median values are shown more clearly in Fig. 9 (High,
Medium and Low QoS traffic are referred to as H, M and
L respectively in Figs. 9 and 10). It is seen that there is
excellent agreement between HoD and CoD values across
all three QoS classes and for both strict priority and fixed
ratio cases. This is remarkable in view of extremely simple
exponential smoothing-based prediction and the highly bursty
nature of the traffic. It is also worth noticing that the latencies
of High and Medium classes are controlled quite well at the
cost of Low QoS class. The dataset DS1 is as same as reported
in Fig 5. If we compare the latency experienced by “High” in
shared environment Fig 6 with the PLMC reported latency, we
have achieved 31% improvement.

Looking at the 90% tail latency, we again find good control
over High and Medium QoS classes’ latency, with a signif-
icantly lower latency for the High QoS than Medium QoS.
However, when we look at the 90% tail latency values, the
agreement becomes poorer. For example, for config 2 and
strict priority, the CoD values are (548, 773, 6589) whereas
the HoD values are (417, 924, 7155). The tail latency is most
important for “High”, where the CoD is about 31% higher.
Again, such accuracy is quite good, considering the stress case
considered here: very high burstiness and synchronized traffic.
The direction of error reverses for the Medium priority: poorer
treatment of high priority will result in bbetter treatpriorities.
Finally, there is a decent agreement on the “Low”, but latency
is not essential for that class. One area of concern that
emerges from our evaluation is an estimation of DT count
needs by the PLMC, as discussed earlier. Since time-series
methods are unlikely to be helpful, a machine learning-based
traffic predictor is another possible approach. However, even a
complex neural net is unlikely to work well unless the traffic
does have significant repeating patterns.

Given this, we believe that a hinting mechanism by the hosts
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(e.g., by the applications running on the hosts) could be a
practical and helpful method. However, the details of such an
approach are beyond the scope of this paper.

We next simulate a less challenging situation where we cre-
ate another dataset (henceforth called Dataset4) from Dataset1
by adding an offset of 200 ms and 400 ms to ”Medium”
and ”Low” traffic, respectively. This change desynchronizes
the peaks and results in a traffic pattern where satisfying
the requirements of all classes becomes much easier. Fig. 10
shows the variation of tail latency for Dataset4. It is seen that
the latency drops drastically, by almost 30X, as compared to
Fig. 9. With such low latencies, the QoS priority issue is
moot, and all hosts get essentially the same treatment. The
agreement between HoD and CoD is excellent for fixed ratio
and very good for strict priority (16% error for high priority).
However, any discrepancy, in this case, is irrelevant since all
QoS objectives achieved.

V. CONCLUSIONS AND FUTURE WORK

This paper explores and extends the predictable latency
mode (PLM) feature introduced in NVMe v1.4. We show how
the PLM concept can be extended to a multi-host environment
where multiple hosts share an NVMe device, as would be the
case for database accesses. For this, we define a new entity
called PLM controller (PLMC) that runs on a storage server
and interacts with all the hosts using that storage server. The
PLMC appears as another host to NVMe devices and can
be implemented without any changes to the current NVMe
v1.4 standard. We evaluated the proposed PLMC in two ways:
making changes to a comprehensive SSD simulator (MQSim)
and using real implementation on a server with identical SSDs
to achieve comparable DTWin periods. The experimental eval-
uation of the mechanism demonstrates that it can substantially
reduce tail latency and help deliver predictable latency to the
higher QoS classes with 31% improvement in 90 percentile
tail latency.

The PLMC could benefit from improved traffic prediction,
but more sophisticated time-series prediction methods do not
seem beneficial because of the high burstiness of the storage
traffic. Instead, a hinting mechanism from hosts (i.e., from
applications running on the hosts) to PLMC could be more
helpful. We will explore this aspect in the future. We will
also examine the impact of writes regarding their effect on
the duration of the nondeterministic window and their impact
on the deterministic mode operation by filling up the NVRAM
buffer and forcing it switch-over to the nondeterministic mode.
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