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ABSTRACT
In Solid-State Drives (SSDs) with tens of flash chips and
highly parallel architecture, we can speed up I/O operations
by well-utilizing resources during page allocation. Propos-
als already exist for using static page allocation which does
not balance the IO load and its efficiency depends on access
address patterns. To our best knowledge, there have been
no research thus far to show what happens if one or more
internal resources can be freely allocated regardless of the
request address. This paper explores the possibility of using
different degrees of dynamism in page allocation and iden-
tifies key design opportunities that they present to improve
SSD’s characteristics.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Sec-
ondary Storage
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1. INTRODUCTION
The main feature of modern SSDs is that they employ a

large set of various resources, including flash packages and
communication channels that are organized to achieve high
level of internal parallelism. Besides, the architecture of
flash packages provides increased number of planes and dies
to boost parallelism. Each of these parallelism levels has its
own limitations and opportunities that causes SSD’s per-
formance to be highly dependent to the strategy used for
conducting flash operations in parallel. This is known as al-
location strategy and determines how to efficiently exploit re-
source parallelism and avoid their inherent limitations. The
main focus of past studies was on allocation schemes where
the target of a flash operation is statically determined using
a predefined priority order of parallelism levels [1, 3]. The
efficiency of these approaches highly depends on the address
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patterns of I/O requests and may lead to conflicts on shared
resources. To address this issue, one can relax deterministic
resource assignment in one or more levels of parallelism, and
use dynamism instead. Accordingly, we introduce new allo-
cation schemes with various degree of freedom of one, two,
three or four, and analyze their performance issues with re-
spect to static allocation. While a number of prior work
adopted fully-dynamic allocation (with a freedom degree of
4) as the extreme design point [1], our evaluations confirm
that it cannot efficiently utilize all parallelism opportunities.
Especially, allocations with freedom degrees of 2 and 3 can
better exploit intra-flash parallelism.

2. DYNAMIC ALLOCATION STRATEGIES
The page allocation (PLAlloc) determines the target Chan-

nel ID (CID), Way ID (WID), Die ID (DID), and Plane ID
(PID) of a page-sized transaction following a specific prior-
ity order of the parallelism levels. Unfortunately, making
an appropriate decision for PLAlloc prioritization strategy
is not a trivial task since each choice acts in favor of some
parallelism levels and diminishes the chance of utilizing oth-
ers. Worse, some of the parallelisms, such as plane-level,
are inherently restricted [1] and require extra design con-
siderations to achieve reasonable performance [2]. In static
strategies, CID, WID, DID and PID are calculated by suc-
cessive divisions of the LPA. This approach makes their per-
formance to be highly dependent to the LPA access patterns.
As an alternative approach, we suggest to relax determinis-
tic assignment of resource ID(s) in one or more dimensions
of parallelism and use dynamic assignment instead. For a
certain level of parallelism, dynamism may be provided by
round-robin or load-aware resource allocations. Our choice
is busy-aware round-robin which immediately tries to assign
next resource, if current candidate is busy. This results in
a better address striping and resource utilization especially
when resources are limited. Based on this definition, 41 dy-
namic PLAlloc strategies are possible which are classified
into four categories by considering their degree of freedom:
Degree one. Just one resource ID is determined dynami-
cally and others are assigned in the static approach:

L1L2L3, ∀i, Li ∈ {C,W,D, P} for Li 6= Lj , i 6= j.

Degree two. Two resource IDs are determined dynamically
and the others are extracted statically:

L1L2, ∀i, Li ∈ {C,W,D, P} for L1 6= L2

Degree three. One resource ID is statically calculated:

L1, L1 ∈ {C,W,D, P}



Degree four. There is one PLAlloc strategy, namely F, to
which all resource IDs are dynamically assigned. Various im-
plementations of this strategy were previously presented [1,
6] as the only choice of dynamic allocation.

Figure 1 presents the steps of translation within CP dy-
namic allocation. As can be seen, CID and PID are deter-
ministically calculated from the LPA, and the two remaining
resource IDs are allocated using busy-aware round-robin al-
gorithm. Note that when more than one level of parallelism
is dynamically assigned, PLAlloc calculates them in order of
channel, way, die, and plane for better striping.

Dynamic CP Strategy:

1 CIDi = LPAi % C 2 PIDi = (LPAi / C) % P 3

4

NextWayID = Channels[CID].NextWayID
while (Channels[CID].Packages[NextWayID].isBusy())

NextWayID = (NextWayID + 1) % W
WID = NextWayID
Channels[CID].NextWayID = NextWayID + 1

LPA: Logical Page Address
CID: Channel ID, WID: Way ID, DID: Die ID, PID: Plane ID
C: Channel No, W: Way No,  D: Die No, P: Plane No

NextDieID = Channels[CID].Packages[WID].NextDieID
while (Channels[CID].Packages[WID].Dies[NextDieID].isBusy())

NextDieID = (NextDieID + 1) % D
DID = NextDieID
Channels[CID].Packages[WID].NextDieID = NextDieID + 1

Figure 1: The steps of translation for dynamic CP PLAlloc.

3. EVALUATION
We perform discrete-event simulations using SSDSim [1].

We model two SSD configurations, SSD-ENT and SSD-CLN,
representing the enterprise and client class SSDs, respec-
tively. SSD-ENT uses 64 SLC NAND flash chips [5] orga-
nized in 8 channels while SSD-CLN has 16 MLC NAND flash
chips [4] connected through 4 communication channels. We
conducted a set of micro-benchmark simulations with vary-
ing I/O request sizes and read/write ratios. The evaluations
are performed on PLAllocs that present best performance
based on our observations. Figure 2a depicts the results of
IOPS and RT for SSD-ENT. As expected, dynamism greatly
enhances the IOPS of small and medium size requests and F,
PD, and DP always show the outstanding results among all
possible choices. Besides, increasing the request size weakens
the superiority of dynamic schemes since the probability of
unresolvable resource contentions grows. As the final point,
the RT results prove that the amount of resources within
SSD-ENT are enough to equally decrease the contentions
probability for both static and dynamic schemes. Regarding
this metric, the C, CP, and CWDP schemes show the best
results while F and PD are ranked second. As can be seen in
Figure 2b, the micro-benchmark results for SSD-CLN show
the impressive performance impact of dynamic schemes, es-
pecially when using D strategy. In fact, the IOPS results of
D are considerably higher than static PLAllocs and it even
shows better values with respect to other dynamic schemes.
Regarding RT results, D shows minor increase for medium
size requests but achieves noticeable improvement for larger
sizes. Our observations show that the superior performance
of D is due to higher chance of exploiting multi-plane and
multi-die parallelism in this scheme. We deduce that either
of F and PD are the best PLAllocs for SSD-ENT and D is
the proper solution for SSD-CLN.
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Figure 2: Performance analysis of sample PLAlloc strategies
for (a) SSD-ENT and (b) SSD-CLN.
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