
7

Performance Evaluation of Dynamic Page Allocation
Strategies in SSDs

ARASH TAVAKKOL, Sharif University of Technology and Institute for Research in Fundamental
Sciences (IPM)
POOYAN MEHRVARZY, Institute for Research in Fundamental Sciences (IPM)
MOHAMMAD ARJOMAND, Sharif University of Technology
HAMID SARBAZI-AZAD, Sharif University of Technology and Institute for Research
in Fundamental Sciences (IPM)

Solid-state drives (SSDs) with tens of NAND flash chips and highly parallel architectures are widely used
in enterprise and client storage systems. As any write operation in NAND flash is preceded by a slow
erase operation, an out-of-place update mechanism is used to distribute writes through SSD storage space
to postpone erase operations as far as possible. SSD controllers use a mapping table along with a specific
allocation strategy to map logical host addresses to physical page addresses within storage space. The
allocation strategy is further responsible for accelerating I/O operations through better striping of physical
addresses over SSD parallel resources. Proposals already exist for using static logical-to-physical address
mapping that does not balance the I/O traffic load within the SSD, and its efficiency highly depends on access
patterns. A more balanced distribution of I/O operations is to alternate resource allocation in a round-robin
manner irrespective of logical addresses. The number of resources that can be dynamically allocated in this
fashion is defined as the degree of freedom, and to the best of our knowledge, there has been no research
thus far to show what happens if different degrees of freedom are used in allocation strategy. This article
explores the possibility of using dynamic resource allocation and identifies key design opportunities that
it presents to improve SSD performance. Specifically, using steady-state analysis of SSDs, we show that
dynamism helps to mitigate performance and endurance overheads of garbage collection. Our steady-state
experiments indicate that midrange/high-end SSDs with dynamic allocation can provide I/O operations per
second (IOPS) improvement of up to 3.3x/9.6x, response time improvement of up to 56%/32%, and about
88%/96% average reduction in the standard deviation of erase counts of NAND flash blocks.
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1. INTRODUCTION

Due to ever-increasing demand for high-performance and reliable storage systems, the
critical role of solid-state drives (SSDs) is increasingly highlighted in both enterprise
and client systems. The SSD is a promising design paradigm that uses a number of
NAND flash memory chips as storage media. The flash chips are arranged in a multi-
channel multiway bus architecture to achieve a high level of internal parallelism. In
addition, the architecture of state-of-the-art flash chips employs a hierarchy of multiple
dies and planes to enhance SSD parallelism. Each of the mentioned parallelism levels
(i.e., channel-, chip-, die-, and plane level) has its own limitations and opportunities,
making SSD performance highly dependent on the strategy used for conducting flash
operations in parallel. This is known as allocation strategy, and its role is to map logical
host addresses to physical page addresses (PPAs) on the storage space of the SSD. This
strategy determines how to effectively exploit different resource parallelism levels and
avoid their inherent limitations to get better performance.

The main focus of past studies was on allocation strategies where the target of a flash
operation is statically determined using simple mathematical equations. For example,
the target channel, chip, die, and plane are determined based on the quotient and
reminder of the successive divisions of the logical address in a predefined order [Shin
et al. 2009; Hu et al. 2011; Jung and Kandemir 2012; Hu et al. 2013]. The write efficiency
of these approaches strongly depends on the address patterns of I/O requests, and
their static nature may lead to conflicts on shared resources. For example, the logical
address of two consecutive program (write) operations may be mapped on the same
channel while other channels are idle. To address this issue, one can relax deterministic
resource assignment in one or more dimensions of parallelism and use dynamism
instead. Dynamism suggests allocating resources in a circular order (e.g., round-robin)
and helps to reduce resource conflicts for simultaneous I/O operations. According to this,
we define the degree of freedom as the number of parallelism levels whose resources are
dynamically allocated, and we introduce new allocation strategies with various freedom
degrees of one, two, three, or four. We then comprehensively analyze dynamic strategies
under real and synthetic disk traffics and highlight their performance benefits with
respect to those of conventional static allocation strategies. Although several prior
works adopted fully dynamic allocation (with a freedom degree of four) as a possible
allocation strategy [Shin et al. 2009; Park et al. 2010b; Hu et al. 2013], our detailed
simulation of two SSD configurations under 32 I/O benchmarks confirm that it cannot
efficiently utilize available parallelism opportunities. More precisely, allocations with
freedom degrees of two and three better exploit intraflash chip parallelisms (die level or
plane level) and provide higher performance than a fully dynamic allocation strategy.

When evaluating an SSD, garbage collection (GC) plays an important role. In fact,
due to the out-of-place update property of NAND flash memories, free (clean) physical
pages are exhausted and further program transactions need reclamation (erase) of some
pages containing invalid data. This procedure is named GC and is very slow because of
time-consuming erase operations. The SSD works with no concern of GC overheads only
at early stages of its lifetime, after which GC plays an important role and noticeably
interferes with normal flash operation [Jung and Kandemir 2013]. Therefore, there is
no guarantee that an allocation strategy will have acceptable performance throughout
the entire lifetime of the SSD by just considering its early stage behavior, especially for
workloads with high write traffic rates. In contrast to all previous proposals, we further
focus on steady-state analysis of allocation strategies by considering the effects of GC.
To this end, we extend our evaluation methodology to simulate steady-state behavior
of the SSD and then uncover that some degrees of freedom in the allocation strategy
can help to tolerate GC effects on overall performance and lifetime. To summarize, the
contributions of this work are as follows:
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Fig. 1. Internal architecture of a NAND flash-based SSD. Red arrows highlight four levels of parallelism.
The plane provides the lowest level of parallelism, and simultaneous accesses to multiple blocks within it
are not permitted.

—We introduce dynamic resource allocation as a solution to mitigate the dependency
of SSD performance to the access patterns of I/O requests. We theoretically and
empirically explore the effects of dynamism on response time (RT) and maximum
I/O operations per second (IOPS) of midrange and high-end SSDs under a large set
of 32 different workloads.

—We study the mutual effects of GC and allocation strategies. To this end, we con-
tinue replaying a workload up to a point that GC is regularly executed with a rate
converging to some fixed value. We observe that adoption of dynamism in page allo-
cation helps the SSD tolerate most GC-induced performance fluctuations and keep
the performance almost stable during its lifetime.

—We explore the benefits of freedom in allocation strategy with respect to fair distri-
bution of operations over flash planes. Our findings confirm that dynamism leads
to uniform distribution of program/erase (P/E) operations and thus improves flash
endurance.

The rest of the article is organized as follows. Section 2 provides background on
SSD internal architecture and basics of allocation strategy in current SSDs. Section 3
presents the evaluation platform. Section 4 gives details of dynamic allocation strate-
gies that are comprehensively evaluated and compared to the conventional static al-
locations in Section 5. Section 6 studies the steady-state behavior of our selected SSD
configurations under dynamic and static page allocation strategies. Section 7 provides a
summary of previous sections and suggests the best choices within dynamic strategies.
Section 8 discusses related work, and Section 9 concludes the article.

2. BACKGROUND

2.1. SSD Internals

Figure 1 illustrates the internal architecture of a modern SSD based on NAND flash
memory [Jung et al. 2012; Hu et al. 2013; Hsieh et al. 2014]. This architecture is
composed of four components. First, the host interface supports communication between
the host system and SSD controller and is responsible for queuing host I/O requests as
well as returning responses back to the host. Second, the SSD controller is responsible
for processing I/O requests and managing SSD resources. Using a microprocessor along
with a DRAM memory, the controller tasks are conducted through executing flash
translation layer (FTL) firmware. Third, the flash chip controller (FCC) logic acts as an
interface between the controller and NAND flash chips. Fourth, a set of NAND flash
memory chips provide the actual storage volume and are connected to the FCC through
a multichannel multiway bus.
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A NAND flash memory supports three main operations: read, program (write), and
erase. A read or program is performed in a unit of page that is typically of size 2KiB,1
4KiB, or higher. However, updating the data of a previously programmed physical page
should be preceded by a very slow erase operation. To hide the negative impacts of
erase operations, physical pages are organized in groups of 128, 256, or more pages,
called block, and erase is performed at block level. In addition, to update previously
written data, the physical page containing old data is marked as invalid and new data
is written to a free (clean) physical page turning its state to valid. This is known as
an out-of-place update and helps to postpone erases. Another obstacle issue with flash
memories is the limited number of reliable P/E cycles per block. Today, FTLs adopt
write caching and wear-leveling policies to guarantee long-term endurance for NAND
flash SSDs [Micron Technology Inc. 2010a; Cintra and Linkewitsch 2013].

As of 2015, flash memory products are provided in three main categories based on
the number of bits stored in each memory cell (i.e., SLC (1 bit/cell), MLC (2 bit/cell),
and TLC (3 bit/cell)). As cell density (bit/cell value) increases, the price per gigabyte of
storage noticeably reduces for the cost of performance reduction. In addition, a typical
SLC product provides endurance of up to 100k P/E cycles, whereas MLC and TLC
products may provide up to 10k and 1k P/E cycles [Grupp et al. 2012], respectively.

The SSD resources are organized in a highly parallel architecture, and a key respon-
sibility of the FTL is to fully exploit such a rich parallelism to concurrently conduct
multiple flash operations and meet the desired performance goals [Chen et al. 2011; Hu
et al. 2013]. Figure 1 illustrates the four levels of parallelism [Chen et al. 2011; Jung
and Kandemir 2012; Hu et al. 2013], each highlighted with red arrows and marked
with a circled number:

—Channel level (�): Flash operations can be striped over channels, and each channel
can independently transmit data and commands.

—Way level (�): A channel is shared between multiple flash memory chips (each con-
nected to one way), and while a chip is transmitting data or command, others may
concurrently execute commands to improve resource utilization.

—Die level (�): A flash chip consists of a number of dies, each having its own command
and address registers, and can independently execute a command (i.e., read, program,
and erase). Thus, the SSD can interleave command execution between dies in the
same chip. We refer to this type of execution as interleaved operations.

—Plane level (�): At the lowest level, a die is composed of a few number of planes, each
including a large set of blocks. The plane is the smallest unit serving a flash opera-
tion within which simultaneous accesses to multiple pages or blocks are not allowed.
All planes of a die share the corresponding command and address registers. Thus,
for parallel execution of read/program operations on two different planes within a
die, the target physical pages must have the same block and page addresses. Addi-
tionally, block addresses must be the same for parallel execution of erase operations
on two different planes within a die. We refer to this type of execution as multiplane
operations.

2.2. Flash Translation Layer

The FTL implements core algorithms and functions required for normal SSD operation
and emulates the block-device interface provided in conventional HDDs. Here, we go
over major FTL functionalities.

I/O request management and address mapping. Figure 2 illustrates the steps of I/O
request handling in a contemporary SSD that supports physically addressed queueing

1KiB, MiB, and GiB are used for binary units, whereas KB, MB, and GB are used for decimal units.
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Fig. 2. Steps of handling I/O requests in contemporary SSDs.

for both read and program operations [Jung et al. 2012; Jung and Kandemir 2014].
We refer to each step with a circled number. First, the host system issues a read
or write request (�) with a specific transfer size and a logical file system address.
After receiving this request, the host interface inserts it into a request queue to be
processed (�). The host interface further parses this request into several page-sized
transactions (�), each with a specific logical page address (LPA). Due to out-of-place
update property, the FTL should translate these LPAs PPAs. The translation procedure
can be performed at either page or block level. The focus of this work is on page-level
translation that follows two different paths for program (�) and read ( ) operations:

—Program address translation (�): To translate the LPA of a program operation, the
FTL uses two primitives. The PLAlloc primitive determines the target channel ID
(CID), way ID (WID), die ID (DID), and plane ID (PID) according to a predefined
allocation strategy. Then, a BLAlloc primitive assigns a block ID (BID) within the
target plane. Inside a block, pages are programmed sequentially, and hence the
page ID (PaID) can be deterministically assigned. Finally, the PPA is determined
based on the outcomes of PLAlloc and BLAlloc. The corresponding (LPA, PPA) pair
is also stored in a mapping table for future read translations. In this work, we
concentrate on PLAlloc design, which plays a key role in optimizing SSD performance
and maximizing striping likelihood. There are well-known choices for BLAlloc, such
as wear-aware [Micron Technology Inc. 2008] or first-fit [Shore 1975] approaches. In
this article, we choose first-fit BLAlloc, which is explained in Section 3.

—Read address translation ( ): The translation is simply performed by searching
the mapping table for the LPA entry that has been stored during program address
translation.

With address translation accomplished, the page-sized transactions are delivered to
the transaction scheduling unit (TSU) to be scheduled for execution on their target
dies (�). The TSU is a portion of FTL firmware. It is responsible for resolving re-
source contentions among flash transactions and tries to schedule a higher number
of transactions for parallel execution. Moreover, the TSU searches for read/program
operations that conform to die-interleaved and multiplane requirements and groups
them for parallel execution [Jung and Kandemir 2014].

Garbage collection. The out-of-place update policy consumes free physical pages and
generates a large number of invalid pages. When the number of free pages inside a
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Table I. Enterprise Products from Well-Known SSD Vendors

Vendor A A B B C C D D H H I I

Capacity (GB) 800 700 400 1,600 480 800 480 400 400 400 2,400 1,200
Spare Factor 27% 36% 27% 27% 17% 58% 13% 27% 35% 49% 27% 27%
Number of Chips 8 64 32 128 16 56 4 16 18 40 48 48
Chip Capacity (GiB) 128 16 16 16 32a 32 128 32 16 16 64 32
Flash Technology MLC SLC MLC MLC MLC MLC TLC MLC MLC SLC MLC SLC
Category MIDb HIGc MID HIG MID HIG MID MID MID MID HIG HIG

aAlmost 85% of the flash chips have this capacity. bMidrange. cHigh end.

plane falls below a specific threshold, the FTL triggers a GC procedure for that plane
to reclaim invalid pages. Having GC launched, the GCSelect primitive determines the
candidate blocks for erase, their valid pages are written into a different block, and
finally erase operations are initiated. Due to high latency of page movement and erase
operation, this procedure takes a long time, which motivates SSD vendors to provide
extra storage space than the user-visible capacity, known as overprovisioning. Over-
provisioning helps to relieve GC side effects and is usually measured in terms of spare
factor (Sf ), which is defined as the ratio of added space to total storage capacity [Van
Houdt 2013a].

Wear leveling. Due to nonuniform distribution of program operations, the frequency
of updating physical pages is not identical and blocks containing hot data will have
more invalid pages. Further, most GCSelect strategies are designed to minimize GC
cost by selecting blocks with higher numbers of invalid pages. This causes the erase
count of blocks with hot data pages to drastically increase, hence resulting in fast
wear-out. To mitigate this and prolong the SSD life span, the FTL uses a set of wear-
leveling policies, such as executing a dedicated primitive that swaps data between
hot and cold blocks [Chang et al. 2004; Micron Technology Inc. 2010a] or utilizing an
endurance-aware BLAlloc [Micron Technology Inc. 2010a].

3. EXPERIMENTAL SETUP

Simulator. Throughout this article, we perform discrete-event and trace-driven simu-
lations using SSDSim [Hu et al. 2011]. SSDSim supports a detailed SSD model given
in Section 2, including a standard multichannel communication protocol and flash
command execution conditions/restrictions, along with request buffering and PLAlloc,
BLAlloc, and GCSelect primitives. More importantly, the aforementioned levels of par-
allelism and advanced operation scheduling policies similar to Sprinkler [Jung and
Kandemir 2014] are provided in SSDSim to fairly exploit channel-, way-, die-, and
plane-level resources. We disable the wear-leveling primitive in SSDSim to study the
interplay of GC and allocation strategy on erase distribution of blocks. The greedy algo-
rithm is our choice for GCSelect, which searches the whole set of blocks in a plane and
selects the block with the maximum number of invalid pages [Bux and Iliadis 2010].
In addition, our BLAlloc strategy is first-fit; it allocates the first block containing free
pages (within a plane) without considering performance or endurance issues. Thus, the
selected BLAlloc is similar to round-robin, and we can fairly decide on the efficiency of
PLAlloc strategies with respect to performance and endurance metrics.

Configuration. There are various SSD products on the market, each offering different
performance characteristics and operational conditions. Most SSD vendors classify
their products into two main categories: enterprise and client. Tables I and II present
an overview of the structural parameters of some SSD products from well-known
vendors in enterprise and client markets, respectively. The SSDs in the enterprise
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Table II. Client Products from Well-Known SSD Vendors

Vendor A A B B C C D D E E F G

Capacity (GB) 960 256 240 512 240 480 500 250 240 256 512 240
Spare Factor 13% 7% 13% 7% 13% 13% 10% 10% 13% 7% 7% 13%
Number of Chips 16 16 16 16 16 16 4 8 8 4 8 8
Chip Capacity (GiB) 64 16 16 32 16 32 128 32 32 64 64 32
Flash Technology MLC MLC MLC MLC MLC MLC TLC TLC MLC MLC MLC MLC

Table III. Details of SSD-MLC and SSD-SLC Configurations Used in Simulation Experiments

Structural Parameters NAND Flash Parameters
SSD-MLC User Capacity = 480GB

Spare-factor = 13%
Host Interface = SATA 3, 6Gbit/s
Number of Bus Channels = 4
Bus Channel I/O Transfer Rate = 200MT/s
Flash Chip per Bus Channel = 4
Flash Chip Capacity = 32GiB

Micron Technology Inc. [2010b]
Number of Dies per Flash Chip = 4
Number of Planes per Die = 2
Block Size = 2MiB, Page Size = 8KiB
Page Read Latency = 75μs
Page Program Latency = 1600μs
Block Erase Latency = 5ms

SSD-SLC User Capacity = 700GB
Spare Factor = 36%
Host Interface = PCIe 2.0 x8, 3.2GB/s
Number of Bus Channels = 8
Bus Channel I/O Transfer Rate = 333MT/s
Flash Chip per Bus Channel = 8
Flash Chip Capacity = 16GiB

Micron Technology Inc. [2010c]
Number of Dies per Flash Chip = 4
Number of Planes per Die = 2
Block Size = 1MiB, Page Size = 8KiB
Page Read Latency = 35μs
Page Program Latency = 350μs
Block Erase Latency = 1.5ms

Note: The SSD-MLC represents client and midrange enterprise SSDs, whereas SSD-SLC conforms to the
properties of high-end enterprise SSDs.

category are further divided into two subcategories: midrange and high end. The
former subcategory typically includes products that use the SAS or SATA interface
and can handle up to tens of thousand IOPS, whereas the latter includes products
with extremely high performance and endurance characteristics that employ a PCIe
interface and offer hundreds of thousand of IOPS. According to our survey, we choose
two different SSD configurations for our simulation experiments. Table III shows
the details of their structures and the underlying NAND flash characteristics. The
SSD-MLC configuration is based on MLC NAND technology and is chosen to comply
with the properties of client and midrange enterprise products containing lower
numbers of flash chips. Further, the SSD-SLC is based on SLC NAND flash technology
and conforms to the properties of a typical high-end enterprise SSD with higher
numbers of flash chips and excessive performance and endurance requirements.

Workloads. Table IV shows the set of selected real application traces and their sta-
tistical characteristics. The iozn and postm traces were collected from IOZone [Norcott
2014] and Postmark [Katcher 1997] file system benchmark suites. The tpce and tpcc
traces are examples of online transaction processing (OLTP) applications collected by
Microsoft Corporation [2008a]; fin1 and fin2 traces are other examples of OLTP ap-
plications collected at two large financial institutions [UMass Trace Repository 2014].
The wsrch trace was collected at a popular search engine [UMass Trace Repository
2014]. The msnfs-b and msn-c traces were collected from MSN storage file servers
by Microsoft Corporation [2008b]. The exch trace is a Microsoft Exchange 2007 mail
server trace [Microsoft Corporation 2008a]. The dev trace was collected from a file
server accessed by more than 3,000 users to download daily releases of Microsoft Visual
Studio [Microsoft Corporation 2008b]. All other traces were gathered from Microsoft
Research Cambridge data-center servers [Microsoft Corporation 2008c] (detailed char-
acterization is available in Narayanan et al. [2008]). This large set of workloads enables
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Table IV. Characteristics of the Evaluated I/O Workloads

Read Size Int Req. Read Size Int Req.
Trace Ratio R/Wa Arr.b Count LPAsc Trace Ratio R/Wa Arr.b Count LPAsc

Read-Dominant Small-Sized Write-Dominant Small-Sized
dev 88% 14.7/10.9 2.7 1326917 1101717 exch 28% 16.1/14.2 1.1 2618264 2173363
fin2 82% 2.3/2.9 11.1 3698864 58954 fin1 23% 2.3/3.8 8.2 5334949 69440
msn-b 67% 9.6/11.1 0.5 1175607 1003987 hm-0 36% 7.4/8.4 151.5 3993316 316442
msn-c 74% 8.7/12.6 4.9 4477510 3421708 mds-0 12% 23.7/7.3 499.4 1211034 410008
prn-1 75% 22.5/11.7 53.8 11233411 10894284 prn-0 11% 22.9/9.7 108.3 5585886 1948695
proj-3 95% 9.0/23.7 269.4 2244644 768778 pxy-0 03% 8.4/4.7 48.2 12518968 119932
proj-4 99% 23.7/11.1 93.5 6465639 16227056 src2-0 11% 8.1/7.1 448.6 1557814 100124
tpce 94% 8.0/9.5 0.5 1345035 2191996 stg-0 15% 24.9/9.2 297.8 2030915 837969
tpcc 67% 8.0/8.4 0.3 2459043 1196995 ts 18% 13.7/8.0 387.0 1801734 128883
wsrch 99% 15.1/8.6 3.4 4579809 846674 dev-0 20% 12.6/8.2 529.0 1143261 72110

Read-Dominant Large-Sized Write-Dominant Large-Sized
mds-1 93% 60.1/13.9 366.5 1637711 11076636 iozn 00% –/335 5.3 1002847 16929531
postm 84% 48.0/336.2 3.0 1139771 3723778 proj-0 12% 17.9/40.9 143.2 4224524 422656
proj-1 89% 37.2/10.8 25.6 23639742 91553496 src1-2 25% 19.1/32.5 317.0 1907773 262496
src1-1 95% 36.0/14.7 13.2 45746222 15768544 src2-2 30% 68.1/51.1 547.6 1156885 2681076
stg-1 64% 59.6/7.2 275.3 2196861 10475174 usr-0 40% 40.9/11.3 270.3 2237889 327001
usr-2 81% 50.8/13.9 57.2 10570046 49735625 web-0 30% 30.0/8.6 297.9 2029945 958629
aRequest size in KiB; bInterarrival time in milliseconds; cTotal number of LPA accesses, assuming 8KiB
page size.

us to do investigations under diverse working conditions. We classify the workloads into
four main groups for better understanding and clear presentation of the results. Our
investigations result in two main criteria for classification: type of requests (read or
write) and average request size. A workload is read dominant if the ratio of read re-
quests is larger than 50% of the total requests; otherwise, it is write dominant. In
addition, a workload is small-sized if its average request size is smaller than 24KiB2; a
workload with an average request size of larger than 24KiB is considered large-sized.
Similar to prior studies [Van Houdt 2014], a preprocessing phase is performed ahead
of trace execution to ensure existence of mapping table entries for all read operations.
During this phase, the mentioned segmentation process of Figure 2 is virtually per-
formed for each I/O request to find out which read LPA requires an entry in the mapping
table. More clearly, if a read request accesses an LPA that is not written with an earlier
write request of the trace, then a mapping table entry is created using PLAlloc and
BLAlloc primitives and the corresponding physical page is marked as valid. This way,
blocks of a plane are written sequentially, and valid pages are initially placed in an
unfragmented area of consecutive physical blocks starting from the first block of the
plane. The remaining physical blocks comprise free pages only. Initially, the first 1− Sf
fraction of plane blocks will be written, and the remaining Sf portion will be free due
to overprovisioning. Microbenchmarking is also used to gain deep insight into SSD
behavior. To this end, we use synthetic traces generated by the well-known DiskSim
trace generator [Bucy et al. 2008].

4. DYNAMIC PAGE ALLOCATION

The PLAlloc primitive determines the target CID, WID, DID, and PID of a page-sized
flash transaction following a specific priority order of the mentioned four parallelism
levels. This prioritization strategy dictates the SSD behavior under various I/O access

224KiB limit for page size equals three pages in both NAND flash chips (Table III). Our empirical investiga-
tions show that workloads with an average request size of three pages or less behave almost similarly with
respect to various allocation strategies.
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patterns and affects the chance of parallel accesses by specifying the method used to
distribute transactions over SSD resources. Let us return to the I/O handling scenario
of the SSD illustrated in Figure 2. As we stated previously, a host I/O request is han-
dled through multiple page-sized flash transactions. If PLAlloc properly stripes the
LPAs over channels, ways, dies, and planes, then the TSU can simultaneously conduct
transactions of an I/O request to achieve lower RTs. This type of usage is known as in-
trarequest parallelism [Jung and Kandemir 2012]. In addition, if we consider the whole
set of queued I/O requests, a proper striping scheme further helps to concurrently man-
age flash transactions of consecutive I/O requests and reduces their average waiting
time. This is called interrequest parallelism [Jung and Kandemir 2012] and leads to
further improvement of overall IOPS and RT.

Unfortunately, making an appropriate decision for PLAlloc prioritization is not triv-
ial, as each choice acts in favor of some parallelism levels and diminishes the chance
of utilizing others. Worse, some of the parallelism levels, such as plane level, have
inherent restrictions and require extra design considerations to achieve reasonable
performance [Jung et al. 2012]. Hence, prioritizing the plane level may even lead to
lower performance if not managed properly [Jung et al. 2012].

ALGORITHM 1: CWDP Allocation
Strategy

function PLALLOC(transaction)
LP A ← transaction.LP A
transaction.CID ← LP A%C
transaction.W ID ← (LP A/C)%W
transaction.DID ← (LP A/(C × W ))%D
transaction.PID ← (LP A/(C × W × D))%P

ALGORITHM 2: DPWC Allocation
Strategy

function PLALLOC(transaction)
LP A ← transaction.LP A
transaction.DID ← LP A%D
transaction.PID ← (LP A/D)%P
transaction.W ID ← (LP A/(D × P))%W
transaction.CID ← (LP A/(D × P × W ))%C

4.1. Traditional Methods of Page Allocation

Most of the previous studies concentrated on static PLAlloc strategies [Shin et al. 2009;
Hu et al. 2011; Jung and Kandemir 2012; Hu et al. 2013], where CID, WID, DID, and
PID are calculated by successive divisions of the LPA. Algorithms 1 and 2 highlight
this process for two sample strategies: CWDP and DPWC. CWDP, at the first step, uses
the reminder of dividing the LPA to the number of channels (C) to determine the target
CID; the quotient is further used for WID calculation, and the process is repeated for
assigning DID and PID in the next steps. In a similar way, calculations in DPWC take
place in the order of DID, PID, WID, and CID. Generally, a static allocation strategy
can be represented by any of the 4! = 24 different combinations as follows:

L1L2L3L4,∀i, Li ∈ {C, W, D, P} for Li �= Lj, i �= j. (1)

The order of the letters in this notation (from left to right) determines the order of
calculations and reflects the address striping strategy. Figure 3 shows an example of
the behavior of different allocation strategies in a typical SSD with four channels, two
ways (flash chips) per channel, two dies per flash chip, and two planes per die. The ID
of each resource within its container is depicted in Figure 3(a), whereas Figure 3(b)
shows the outcome of address translation using the CWDP strategy. As can be seen
in the figure, this strategy first stripes logical addresses over channels ([LPA = 0] is
assigned to [C#0], [LPA = 1] is assigned to [C#1], etc.) and can decrease the probability
of intrarequest contention over this critical resource type [Hu et al. 2013]. However,
due to its static nature, this strategy cannot resolve some of the resource conflicts. For
example, both [LPA = 0] and [LPA = 32] are mapped to [C#0, W#0, D#0, P#0], and
hence one program operation should wait until the accomplishment of the other while
there are still free resources available. The other three unresolvable contentions are
highlighted with red color in Figure 3(b).
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Fig. 3. Example scenario that shows the behavior of different allocation strategies. (a) IDs of SSD resources
within their container and the list of current program LPAs, waiting to be translated to PPAs. (b) Result
of the CWDP strategy with four unresolvable conflicts. (c) CWD provides freedom in assigning PID and
successfully resolves resource conflict for [LP A = 32]. (d) CW provides freedom in assigning PID and DID
and resolves conflicts for both [LPA = 32] and [LPA = 36]. (e) C provides freedom in assigning PID, DID,
and WID, and all resources are successfully assigned except for [LPA = 34]. (f) F provides degree-4 freedom
where all resources are dynamically allocated and all conflicts are resolved.

4.2. Use of Dynamism in Page Allocation

The method of calculating resource IDs in static approaches makes their write perfor-
mance highly dependent on LPA access patterns. As an alternative, we suggest relaxing
deterministic assignment of resource ID(s) in one or more levels of parallelism and us-
ing dynamic assignment instead. Dynamism may be provided by either round-robin
or load-aware schemes. We use a mixture of round-robin and load-aware schemes in
which round-robin allocation is normally used, but if a resource is busy during its turn,
then the token is passed to the next resource at the same level. For instance, in dy-
namic CID assignment, if the FTL finds that the current channel (e.g., [C#2]) is busy,
then it tries to assign the next channel (e.g., [C#3]) for LPA translation. This strategy
results in better striping and resource utilization, especially in resource-limited client
and midrange SSDs.

Before presenting our new dynamic PLAlloc strategies, we define the notion of degree
of freedom as the number of resource IDs that are dynamically allocated. For example,
a strategy has a freedom degree of one (shortly, degree-1) when it allocates one of
resource IDs (CID, WID, DID, or PID) based on the mentioned load-aware round-
robin model, and all others are statically determined. According to this definition, 41
dynamic allocation strategies are possible, which are classified into four categories by
considering their degree of freedom.

Degree-1. Just one resource ID is determined dynamically, and other IDs are assigned
in the same way done by the static approach. These strategies are represented as
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follows:

L1L2L3,∀i, Li ∈ {C, W, D, P} for Li �= Lj, i �= j. (2)

The letters show the statically allocated resources, and their order (from left to right)
determines the priority of calculations. Based on this definition, we have 4 × 3! new
allocation strategies. For instance, CWD is a degree-1 dynamic strategy that provides
freedom in PID allocation. Figure 3(c) depicts the outcome of address translation using
CWD for our example scenario of Figure 3(a). As can be seen, this strategy success-
fully allocates resources for [LPA = 32] with the help of dynamic PID allocation.
Nonetheless, it cannot resolve the other three conflicts, as there are no free planes
within target dies. For instance, [LPA = 36] is remained unassigned in the die address
[C#0, W#1, D#0] as planes [P#0] and [P#1] are dedicated for execution of program
operations at [LPA = 4] and [LPA = 20], respectively.

Degree-2. Two resource IDs are determined dynamically, and others are extracted
statically. These allocation strategies are represented as follows:

L1L2,∀i, Li ∈ {C, W, D, P} for L1 �= L2. (3)

There are 12 PLAlloc strategies in this category. Since more than one resource ID
is determined dynamically, dynamic allocation must be performed based on a priority
order of parallelism levels. In Section 4.3, we discuss the prioritization policy and its
implementation issues. Figure 3(d) shows how CW, as a degree-2 strategy, resolves
contentions for program operations at [LPA = 32] and [LPA = 36] via dynamic die
and plane allocation. For each of these LPAs, four different dynamic choices are pro-
vided. Among these choices, [LPA = 32] can be assigned to one of the three free planes
at [C#0, W#0, D#0, P#1], [C#0, W#0, D#1, P#0], or [C#0, W#0, D#1, P#1], whereas for
[LPA = 36], either of two free planes at [C#0, W#1, D#1, P#0] or [C#0, W#1, D#1, P#1]
can be used. However, there exists no contention-free assignment for program opera-
tions at [LPA = 33] and [LPA = 34].

Degree-3. Only one resource ID is statically calculated. There are four strategies in
this category, which are represented as follows:

L1, L1 ∈ {C, W, D, P}. (4)

Figure 3(e) shows how C, as a degree-3 strategy, provides 8 different possible choices for
each of unallocated LPAs in Figure 3(b). This way, translation is successfully performed
for [LPA = 32], [LPA = 33] and [LPA = 36] but [LPA = 34] remains unallocated.

Degree-4. There is one PLAlloc strategy, namely F (fully dynamic), in which all
resource IDs are dynamically assigned. This strategy was previously presented as the
only choice of dynamic allocation [Park et al. 2010b; Hu et al. 2013]. As shown in
Figure 3(f), this strategy can assign an LPA to any free plane within the SSD, and thus
all resource contentions are successfully resolved. According to our discussions about
the impact of dynamism on resolving resource conflicts among program operations, one
might deduce that degree-4 strategy may provide the best performance. However, when
considering the impact of allocation strategy on overall SSD performance, there are
other critical issues that must be taken into account. Strictly speaking, F may hardly
satisfy constraints of plane-level parallelism for both read and program operations, and
as empirically shown in Section 5, utilization of intrachip parallelism levels in F is lower
than that of many other dynamic allocation strategies. Moreover, F has no advantage
over other dynamic strategies regarding read performance. In fact, dynamism generally
helps to exploit parallelism just for program operations, but future read operations
may follow different LPA access patterns, and hence dynamism may not lead to proper
speedup for reads.
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ALGORITHM 3: General Scheme of PLAlloc for Dynamic Allocation Strategies
function PLALLOC(transaction)

LPA ← transaction.LPA
if static CID allocation is used then

transaction.CID ← MATHEMATICALCIDCALCULATION(LPA)
if static WID is used then

transaction.W ID ← MATHEMATICALWIDCALCULATION(LPA)
if static DID is used then

transaction.DID ← MATHEMATICALDIDCALCULATION(LPA)
if static PID is used then

transaction.PID ← MATHEMATICALPIDCALCULATION(LPA)

ALGORITHM 4: General Scheme of Dynamic Resource Allocation Performed in the
TSU

function TSU DYNAMICALLOCATION(transaction)
if static CID allocation is used then

ASSIGNWAY(transaction)
else

while translation is not successful and all channels are not checked do
if Channels[NextChannel] is idle then

transaction.CID ← NextChannel
ASSIGNWAY(transaction)

NextChannel ← (NextChannel + 1) mod C � round-robin update of next channel

function ASSIGNWAY(transaction)
if static WID allocation is used then

ASSIGNDIE(transaction)
else

Channel ← Channels[transaction.CID]
while translation is not successful and all chips of Channel are not checked do

if Channel.Chips[Channel.NextWay] is idle then
transaction.W ID ← Channel.NextWay
ASSIGNDIE(transaction)

if translation is not successful or striping is fully performed inside Channel.Chips[Channel.NextWay]
then

Channel.NextWay ← (Channel.NextWay + 1) mod W � round-robin update of next way

function ASSIGNDIE(transaction)
if static DID allocation is used then

ASSIGNPLANE(transaction)
else

Chip ← Channels[transaction.CID].Chips[transaction.W ID]
while translation is not successful and all dies of Chip are not checked do

if Chip.Dies[Chip.NextDie] is free then
transaction.DID ← Chip.NextDie
ASSIGNPLANE(transaction)

Chip.NextDie ← (Chip.NextDie + 1) mod D � round-robin update of next die

function ASSIGNPLANE(transaction)
if static PID allocation is used then

if multiplane constraint is satisfied for transaction.DID and transaction.PID then
transaction.P P A ← BLAlloc(transaction)

else
Die ← Channels[transaction.CID].Chips[transaction.W ID].Dies[transaction.DID]
while translation is not successful and all planes of Die are not checked do

if Die.Planes[Die.NextPlane] is free and multiplane constraint is satisfied then
transaction.PID ← Die.NextPlane
transaction.P P A ← BLAlloc(transaction)

Die.NextPlane ← (Die.NextPlane + 1) mod P � round-robin update of next plane
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ALGORITHM 5: Realization of CD Allocation Strategy Based on Algorithms 3 and 4
function PLALLOC(transaction)

transaction.CID ← transaction.LPA%C
transaction.DID ← (transaction.LPA/C)%D

function TSU DYNAMICALLOCATION(transaction)
Channel ← Channels[transaction.CID]
while translation is not successful and all chips of Channel are not checked do

if Channel.Chips[Channel.NextWay] is idle then
transaction.W ID ← Channel.NextWay
Die ← Channel.Chips[transaction.W ID].Dies[transaction.DID]
while translation is not successful and all planes of Die are not checked do

if Die.Planes[Die.NextPlane] is free and multiplane constraint is satisfied then
transaction.PID ← Die.NextPlane
transaction.P P A ← BLAlloc(transaction)

Die.NextPlane ← (Die.NextPlane + 1) mod P
if translation is not successful or striping is fully performed inside Channel.Chips[Channel.NextWay] then

Channel.NextWay ← (Channel.NextWay + 1) mod W

4.3. Implementing Dynamic Allocation

As mentioned in Section 2.2, the TSU is responsible for resolving resource contentions
among flash transactions to simultaneously conduct multiple operations in parallel and
achieve high overall performance. As a prerequisite, page allocation strategy should
fairly stripe flash transactions over SSD parallel resources to aid the TSU by reducing
the contention probability and increasing the chance of parallel operation execution.
Consequently, the address striping policy and priority order of parallelism levels are
critical for effective exploitation of parallelism. For a dynamic allocation strategy, Hu
et al. [2011, 2013] theoretically and experimentally concluded that the most beneficial
priority order of parallelism levels is channel first, die second, plane third, and way as
the last one. Therefore, we use the same order of parallelism levels for our proposed
dynamic allocation strategies of degree-2, degree-3, and degree-4.

Since a dynamic allocation strategy requires being aware of the current status of
SSD resources, dynamic allocation of CID, WID, DID, and PID can be performed inside
the TSU. This is simply done in conjunction with normal TSU tasks at the cost of a
few more instructions, which is negligible when compared to complicated scheduling
mechanisms required for effective usage of parallel resources [Park et al. 2010b; Jung
et al. 2012; Jung and Kandemir 2014]. Therefore, to realize a dynamic strategy, PLAlloc
just calculates the statically allocated resource IDs whereas all dynamic allocations are
performed inside the TSU. Algorithms 3 and 4 illustrate the general scheme of PLAlloc
and the TSU for dynamic allocation strategies, respectively. During dynamic allocation,
resource IDs are determined in the order of channel, way, die, and plane, since IDs of
lower-level resources are defined within the address domain of higher-level container
resources. For instance, there are different dies that have the same die address of [D#0]
(see Figure 3(a)), each belonging to a different flash chip. It is worth noting that this
order of resource ID allocation does not modify the mentioned priority order of paral-
lelism levels. For instance, LPA striping is still performed in the order of channel, die,
plane, and way despite the mentioned channel, way, die, and plane order for resource
ID allocation. This is simply accomplished by adding a single condition at the end of the
ASSIGNWAY function in such a way that NextWay of a channel is not updated until LPA
striping is fully performed over dies and planes of the current way (flash chip). Strictly
speaking, the priority order of parallelism levels is directly related to the update policy
of the corresponding round-robin variables (i.e., NextChannel, NextWay, NextDie, and
NextPlane). If these variables are updated without any restriction, then the priority
order of parallelism levels is directly determined based on the resource allocation or-
der. However, restricting the update of a higher-level round-robin variable, through a
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Fig. 4. Example scenario that shows snapshots of CD behavior in an SSD configuration similar to Figure 3(a).
(a) Queued write I/O requests and their corresponding flash program transactions. (b) After translation of
[LPA = 11], NextPlane of die [C#3, W#0, D#0] is updated; this type of update is seen for all program opera-
tions. (c) After translation of [LPA = 14], all parallelism levels inside flash chip [C#2, W#0] are completely
utilized; consequently, NextWay of channel [C#2] is updated. (d) There is no free plane in die [C#1, W#0, D#0]
to be allocated to [LPA = 17]; hence, an early update of NextWay variable is required. (e) After translation
of [LPA = 30], NextWay of channel [C#2] is updated due to full utilization of all parallelism levels inside
flash chip [C#2, W#1]. (f) Unsuccessful translation of [LPA = 33] due to resource conflicts. (g) Final result of
the translation process that includes two unallocated LPAs.

conditional statement, reduces the priority order of its corresponding parallelism level.
Accordingly, the least priority is given to way-level address striping, as updating of the
NextWay variable is controlled through a condition that checks for complete striping
of LPAs over dies and planes within the current way (flash chip). Algorithms 3 and 4,
however, should be customized for realization of a specific dynamic allocation strategy.
For instance, the whole steps of PLAlloc and the TSU for LPA to PPA translation are
reduced to the lines depicted in Algorithm 5 for implementation of CD strategy.

To better describe the behavior of a dynamic allocation strategy and clarify the criti-
cal role of round-robin variables, Figure 4 provides an example scenario of some waiting
I/O requests and the outcomes of the address translation process using CD strategy. As
illustrated in Figure 4(a), there are nine queued I/O requests, which are processed from
left to right (from Request [#R] to Request [#(R+ 8)]) and are segmented to page-sized
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transactions, each having a specific LPA address. In the remainder, we just concen-
trate on important snapshots of the translation process and escape the other parts for
brevity. Figure 4(b) shows the snapshot at which CD strategy determines the physical
address for [LPA = 11]. First, CID and DID are mathematically calculated using the
equations 35 provided in Algorithm 5. This way, the channel [C#3] (11%4 = 3) and die
[D#0] (11/4%2 = 0) are assigned in the PLAlloc function. Then, flash chip [C#3, W#0]
is selected based on the current value of NextWay dedicated to channel [C#3]. Finally,
PID is determined using NextPlane of die [C#3, W#0, D#0], and hence [LPA = 11] is
mapped to the plane [C#3, W#0, D#0, P#0]. Variable NextPlane is updated right after
PID allocation to record the next plane of die [C#3, W#0, D#0]. Contrarily, NextWay
remains unchanged due to the lower priority of way-level parallelism. In fact, CD strat-
egy waits for full LPA distribution over dies and planes inside flash chip [C#3, W#0]
before using the neighbor flash chip at [C#3, W#1]. The next snapshot of address
translation is depicted in Figure 4(c), where the NextWay normal update condition is
satisfied. As can be seen, [LPA = 14] is mapped to the plane at [C#2, W#0, D#1, P#1],
which is the last free plane inside flash chip [C#2, W#0]. Therefore, the corresponding
NextWay value is updated to point to the next flash chip inside channel [C#2] (i.e.,
flash chip [C#2, W#1]). Thus far, the translation process is successfully performed for
all transactions of Request [#R] to Request [#(R+3)]. Figure 4(d) shows the translation
process for [LPA = 17], which is dedicated to the next request in the queue. Here, the
process leads to a situation where an early update of NextWay is required despite
the incomplete utilization of the flash chip internal parallelism. In fact, mathematical
calculations lead to channel [C#1] and die [D#0] for physical mapping of [LPA = 17]. A
complete search within the current flash chip of channel [C#1] (i.e., chip [C#1, W#0])
reveals that all planes of die [C#1, W#0, D#0] are occupied. This search is performed
in the inner loop of the TSU DynamicAllocation function proposed in Algorithm 5. To
perform a successful LPA translation, an early update of NextWay needs to occur in
the outer loop of this function, and flash chip [C#1, W#1] is now dedicated for program
LPA translation. The translation process consequently assigns [LPA = 17] to the free
plane at [C#1, W#1, D#0, P#0]. Figure 4(e) depicts another snapshot of the translation
process where NextWay of channel [C#2] is normally updated due to complete striping
inside flash chip [C#2, W#1]. However, the new flash chip [C#2, W#0] is fully occu-
pied and cannot service program operations directed toward channel [C#0]. Figure 4(f)
shows a snapshot of address translation where unresolvable resource contention oc-
curs for [LPA = 33]. This LPA must be allocated to channel [C#1] and die [D#0]. But
the dies at [C#1, W#0, D#0] and [C#1, W#1, D#0] are fully occupied, and the program
transaction related to [LPA = 33] must wait until the completion of program operations
at one of these dies. Figure 4(g) illustrates the final outcomes of address translation
and the two unresolvable contentions related to Request [#(R + 8)].

4.4. Mapping Table Size

Considering the I/O handling scenario described in Figure 2, a dynamic allocation
strategy may increase the size of the mapping table. In fact, the FTL has to store
any dynamically allocated resource ID together with the outcome of BLAlloc (i.e.,
BID and PaID) in DRAM to be able to retrieve the corresponding PPA in future read
address translations. However, if static allocation is used, only BID and PaID must
be stored, and all other resource IDs can be simply retrieved through mathematical
calculations. Suppose that there are a total of c channels in the SSD, w flash chips in
each channel, d dies in each flash chip, p planes within a die, b blocks within a plane,
and k pages in each block. Then, each entry in the mapping table of a static allocation
strategy requires log b + log k bits, hereafter referred as base. In a dynamic strategy
with degree-1 freedom, the size of the mapping table entry is correspondingly increased
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Table V. Implementation Cost of Dynamic Allocation Strategies for SSD-MLC and SSD-SLC
in Terms of Extra Mapping Table Size

Static Degree-1 Degree-2 Degree-3 F

D
yn

am
ic

A
ll

oc
at

ed CID � � � � � � � �
WID � � � � � � � �
DID � � � � � � � �
PID � � � � � � � �

SSD-MLC
Bit increase (%) — 11 11 11 5 21 21 16 21 16 16 32 26 26 26 37
Byte increase (%) — 0 0 0 0 0 0 0 0 0 0 33 0 0 0 33
Map size (MB) 176 176 176 176 176 176 176 176 176 176 176 234 176 176 176 234

SSD-SLC
Bit increase (%) — 17 17 11 6 33 28 22 28 22 17 44 39 33 33 50
Byte increase (%) — 0 0 0 0 0 0 0 0 0 0 33 33 0 0 33
Map size (MB) 256 258 258 258 258 258 258 258 258 258 258 344 344 258 258 344
Note: Mos dynamic strategies incur zero byte-level overhead.

to base + log c, base + log w, base + log d, or base + log p to store the information of the
sole dynamically allocated resource ID. This way, F strategy requires a mapping entry
size of up to base+log c+log w+log d+log p bits for storing CID, WID, DID, and PID, as
well as BID and PaID. To have a numerical estimation of the dynamism effects on the
size of the mapping table, we consider the two target SSD configurations introduced
in Table III; based on the specifications, the base (static allocation entry) size for SSD-
MLC and SSD-SLC is equal to 19 bits and 18 bits, respectively. Nevertheless, mapping
table entries are stored in a word (multiple bytes), and therefore it is more realistic to
concentrate on a byte-level estimation. Accordingly, in both configurations, each table
entry requires 3B of storage, and thus a total space of 176MB and 256MB must be
dedicated for storing the mapping table of static allocations in SSD-MLC and SSD-SLC,
respectively. Table V presents the mapping table size for different degrees of freedom
and different types of dynamically allocated resources. As results show, the overhead
in terms of the number of bits is moderate and varies between 5% and 37% for SSD-
MLC and 6% and 50% for SSD-SLC. However, more realistic byte-level estimations
show lower or even no overhead of mapping table size. As illustrated in Table V, a 33%
memory space overhead is incurred only for P and F strategies in SSD-MLC and for P,
D, and F strategies in SSD-SLC. Interestingly, all other dynamic allocation strategies
do not require extra DRAM space for mapping table storage. It is also noteworthy that
different mapping table caching mechanisms can be used to substantially decrease the
required DRAM space of dynamic strategies [Wu et al. 2006; Gupta et al. 2009; Park
et al. 2010a; Hu et al. 2010; Budilovsky et al. 2011]. As proposed Gupta et al. [2009],
the temporal locality of real workloads can be exploited to implement a demand-based
caching of mapping entries. This way, entries are mainly stored on flash storage, and
only the hot (recently accessed) ones are kept inside a small portion of DRAM. Even if
access locality is not seen in the workloads, other complementary mechanisms, such as
HAT [Hu et al. 2010], can be used to prevent performance degradation of demand-based
caching. HAT accelerates accesses to the missing mapping entries through a dedicated
access path to a solid-state memory device exclusively used for mapping table storage.
On the other hand, the large and inexpensive host DRAM memory can be used to cache
mapping entries in low-cost SSDs similar to SSD-MLC [Budilovsky et al. 2011].

5. THE ROLE OF DYNAMISM FOR BETTER EXPLOITING PARALLELISM

In this section, we analyze the performance of 41 dynamic allocation strategies versus
24 static ones for SSD-MLC and SSD-SLC. First, we provide a detailed explanation of
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the metrics used in our evaluations, and in the next two sections, simulation results are
thoroughly discussed for page allocation strategies in SSD-MLC and SSD-SLC. In our
discussions, we first investigate for the impact of allocation strategies on the fairness
of flash operation distribution over the whole set of planes within the SSD (fairness,
for short). The fairness metric is the standard deviation of the number of executed flash
read/program operations over SSD planes. The lower values for standard deviation
show that the allocation strategy better stripes flash operations over SSD resources
and hence the resource utilization, and the chance of parallel operation execution are
improved. Figure 5 shows the achieved fairness results for the workload categories
mentioned in Table IV. For the sake of comparison, the results of PLAlloc strategies for
a specific workload (e.g., fin2) are normalized with respect to those of CWDP strategy
(the left-most item). Then, for the set of workloads within a category, the average of the
normalized values is illustrated. The same method is also used for data presentation
in Figures 6, 7, and 8.

We then provide details of the executed die-interleaved and multiplane operations
in Figure 6 to help studying the impact of allocation strategies on the utilization of
die- and plane-level parallelisms, respectively. Many previous studies have shown the
critical role of these two parallelism levels to improve SSD performance [Park et al.
2010b; Jung and Kandemir 2012; Hu et al. 2013]. In fact, higher utilization of die- and
plane-level parallelisms increases the opportunity for parallel I/O transactions on SSD
back-end (flash) resources, and hence higher aggregate performance will be perceived
at the front-end (host interface). For program operation, the plots show the percentage
of exclusive interleaved, exclusive multiplane, and simultaneous interleaved and mul-
tiplane operations. The remaining portion of programs, which are absent in the plots,
are handled through simple operations with no die- and plane-level parallelism. For
read operations, however, there are just exclusive interleaved and exclusive multiplane
operations.3

Next, we investigate the effects of dynamism on the waiting time of read/program
operations, based on the results presented in Figure 7. This figure reveals how well
the allocation strategy reduces the probability of resource contention. More precisely,
when the TSU receives a flash operation, it waits until all resource conflicts at channel-,
way-, die-, and plane level are resolved and then asks the FCC to initiate a commu-
nication with target die for sending operation command and data. Moreover, when a
read operation finishes, the TSU waits for the corresponding communication channel
to become free and then asks the FCC to transmit read data back to the controller. A
good PLAlloc strategy decreases the average waiting time of flash operations through
better striping of LPAs.

Finally, based on our discussions regarding Figures 5, 6, and 7, we analyze the
performance results of SSD-MLC and SSD-SLC presented in Figure 8 in terms of
maximum host IOPS and average RT. RT is defined as the time elapsed from I/O request
arrival until the response is sent back via the host interface. For maximum IOPS
calculation, the number of completed I/O operations is counted in the unit of time when
the SSD is under a full stress condition. To reach this condition, the interarrival time of
I/O events is ignored, and requests are successively serviced when there is at least one
free slot in the I/O request queue. Variations of this methodology were used in previous
studies for IOPS calculation [Narayanan et al. 2009; Wu and He 2012; Grupp et al.
2013], whereas exactly the same method was already used in Tavakkol et al. [2014].
Although the behavior of dynamic strategies in SSD-MLC and SSD-SLC is generally
similar in terms of fairness and executed operation type, we see different behaviors for

3Since the read execution time is comparable to the flash data transfer time, simultaneous usage of inter-
leaved and multiplane reads may not have noticeable performance gain.
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Fig. 5. Fairness of operation distribution among the whole set of planes inside the SSD in SSD-MLC
(a) and SSD-SLC (b). The fairness metric is the standard deviation of the number of executed read/program
operations per plane. For better comparison, the results are normalized with respect to the value of CWDP
(left-most) strategy. Smaller normalized values are desirable, as they translate into better fairness, and thus
degree-3 and degree-4 strategies are ranked first.

their waiting time and performance. Hence, simulation results are separately discussed
for SSD-MLC and SSD-SLC in Sections 5.1 and 5.2, respectively.

5.1. Client and Midrange SSDs Based on MLC NAND Flash

Let us start with fairness results of SSD-MLC shown in Figure 5(a). As can be seen,
there are minor variations in the outcomes of static allocation strategies because their
behavior depends only on LPA access patterns, and it is the mathematical method
of resource allocation that keeps fairness always the same. However, the results of
dynamic strategies substantially change based on the degree of freedom and prior-
ity order of resource allocation. Despite undesirable results for some strategies with
degree-1 or degree-2 freedom in read-dominant workloads, the fairness is improved
for higher freedom degrees. In other words, increasing the degree of freedom greatly
reduces the dependency of flash operation distribution to LPAs, and the round-robin
busy-aware allocation approach has the opportunity to evenly distribute operations
over SSD resources. In sum, F, C, and P strategies are always ranked first, whereas D,
CW, and WC are ranked second regarding fairness of both programs and reads.

Figure 6(a) illustrates the types of executed operations in SSD-MLC. For static al-
location strategies, there is a direct relation between the percentage of each operation
type and priority order of resource assignment. Strictly speaking, the percentage of
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Fig. 6. Details of the executed operation types for different page allocation strategies in SSD-MLC (a) and
SSD-SLC (b). The results show that two factors in dynamic strategies help the FTL to better exploit intrachip
parallelism: static allocation of DID and increasing the degree of freedom. Thus, in most workload categories,
D, DC, and DW strategies achieve the highest percentage of multiplane and interleaved operation execution.

interleaved/multiplane operations is increased when higher priority is given to
DID/PID allocation. For example, a higher number of interleaved operations are exe-
cuted in WPDC with respect to WPCD due to higher priority of DID allocation. Thus,
allocation strategies such as DPWC and PDWC achieve the best results for interleaved
and multiplane operations, respectively. In dynamic strategies, the ratio of each oper-
ation type is related to both priority of resource allocation and the degree of freedom:
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Fig. 7. Waiting time of flash operations in SSD-MLC (a) and SSD-SLC (b). The results are normalized
in a similar manner to Figure 5. A small waiting time value is desirable, as it works in favor of better
performance. For both SSDs, dynamism helps to reduce the waiting time of program operation while affecting
read operation negligibly. Best results are achieved for degree-3 and degree-4 strategies.

—Multiplane operations: As results show, the share of multiplane operations is en-
hanced if static DID calculation is used together with dynamic assignment of PID.
Accordingly, strategies such as CWD, CDW, WCD, WDC, DCW, and DWC provide the
best results for exploiting plane-level parallelism in the degree-1 category. Higher
degrees of freedom can further improve the ratio of multiplane operations, and D
strategy is ranked first among all dynamic strategies. The ratio of multiplane oper-
ations in F strategy is too small, as it gives low priority to dynamic PID allocation
to achieve maximum fairness. Consequently, the chance of exploiting plane-level
parallelism is significantly reduced in F.

—Interleaved operations: The results of interleaved operations reveal that if one of
the DIDs and PIDs is calculated statically and at the same time the other one is
assigned dynamically, then the ratio of interleaved operations is increased. If DID is
statically calculated, then more improvement can be achieved through prioritizing
DID calculation.

The waiting time results of SSD-MLC in Figure 7(a) show that an allocation strat-
egy may undesirably obtain a large waiting time despite the fact that it provides good
results of fairness and executed operation types. For instance, the fairness values for
static strategies such as DPWC and PDWC are similar to CWDP, and they even achieve
a higher percentage of interleaved and multiplane operations. Nonetheless, their
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waiting time is extremely worse than that of CWDP due to their negative impacts on
contentions at the channel domain. Strictly speaking, if an allocation strategy increases
the probability of channel-level contention, then the achieved gains due to better fair-
ness and higher ratio of interleaved and multiplane operations will completely vanish.
Suppose that an I/O request including [LPA = 0] to [LPA = 7] is handled in our example
SSD configuration of Figure 3(a). If the FTL uses DPWC and PDWC strategies, then all
LPAs are mapped to [C#0], whereas using CWDP, they are equally striped over [C#0] to
[C#3] and can better exploit SSD channels for increasing intrarequest parallelism and
decreasing waiting time. In general, resolving contentions at the channel domain plays
a key role in waiting time reduction, and simulation results show that giving higher
priority to static allocation of CID, as well as dynamic allocation of CID, decreases the
average waiting time. As a consequence, degree-2 strategies, such as CD and DW, and
most degree-3 and degree-4 strategies provide the best waiting time results for both
read and program operations. In sum, a good allocation strategy should minimize the
probability of contention over SSD channels, and at the same time, it must increase the
utilization of intrachip parallelisms (die- and plane level). We also see an interesting
behavior in the plots. For instance, degree-1 and degree-2 strategies may increase the
waiting time of read operation in read-dominant workloads but are usually helpful for
program operation. This supports our discussion at the end of Section 4.2 on the role
of dynamism for read and program operations due to dissimilarities in their LPA ac-
cesses. More precisely, there is no guarantee that future read requests follow the same
LPA access pattern as in previous writes; as a result, new unresolvable resource con-
tentions may be introduced for reads, particularly in degree-1 and degree-2 strategies
with low-priority CID allocation. However, other dynamic strategies, such as D, P, F,
C, CP, and CD, are always ranked first in terms of read waiting time, as they decrease
the probability of channel-level contentions. As the ratio of write requests in the work-
load increases, these strategies can also indirectly reduce read waiting time through
accelerating program operations and releasing resources required by read operations.

The performance results of SSD-MLC, shown in Figure 8(a), lead to the following
key points. First, IOPS is greatly improved as a result of relaxing static resource ID as-
signment in one or more levels of parallelism. As we mentioned previously, dynamism
helps to enhance resource utilization through improved fairness and increased per-
centage of interleaved and multiplane operations. Thus, the FTL can simultaneously
conduct more flash operations on SSD resources to better exploit intra- and interre-
quest parallelism and handle more I/O requests in units of time. The results show
that the maximum IOPS improvement is as high as 3.2x for write-dominant work-
loads, whereas it is limited to 1.7x for read-dominant ones. The allocation strategies
with degree-3 freedom are always ranked first in terms of IOPS, whereas other dy-
namic strategies, such as F, CD, and DC, can also achieve very high IOPS. Second,
dynamic allocation leads to great improvement for RT, particularly in write-dominant
workloads. As stated before, dynamism can substantially reduce the average waiting
time of program operations, whereas the improvement rate for read waiting time is
less considerable, especially in read-dominant workloads. Consequently, a maximum
of 44% RT improvement can be achieved in write-dominant workloads, whereas the
improvement rate is limited to 18% for read-dominant ones.

The overall ranking process of allocation strategies can be considered a multiobjective
decision problem where both low RT and high IOPS values are desirable. Such a
problem is difficult to solve because the scalar concept of optimality cannot be applied
for strategy ranking based on two different performance metrics. An allocation strategy
may provide the best result for one metric, but it may worsen the other one. Hence,
there is no trivial ranking methodology, and it is required to define a decision scheme
for determining acceptable trade-off optimal strategies. The nature of this problem
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Fig. 8. Comparison of IOPS and average RT results under real workloads for SSD-MLC (a) and SSD-SLC
(b). For each allocation strategy, gray points represent individual workload results being normalized with
respect to the corresponding value of CWDP, whereas bold points provide the average of normalized values.
Note that higher IOPS and lower RT values are desirable; plot areas are zoomed to clarify the differences
among bold points, and hence a few gray points are not visible.
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Table VI. Pareto Fronts of Allocation Strategies in Terms of IOPS and RT Criteria for SSD-MLC

Rank-0 Rank-1 Optimal Set (IOPS/RT)
Read-Dominant Small-Sized D, F, P CD CD(1.6x/17%), D(2.0x/17%), P(1.8x/17%), F(18x/17%)
Read-Dominant Large-Sized D CD, DW, P, F CD(1.2x/16%), DW(1.2x/16%), D(1.3x/18%),

P(1.2x/16%), F(1.2x/16%)
Write-Dominant Small-Sized D P, F D(3.2x/44%), P(3.0x/41%), F(2.9x/41%)
Write-Dominant Large-Sized D DC, P, F DC(2.2x/30%), D(2.8x/44%), P(2.2x/37%), F(2.1x/37%)
Note: For each workload category, the optimal set is defined to include members of both rank-0 and rank-1
Pareto fronts.

leads us to the widely used concept of Pareto-optimality [Marler and Arora 2004]. An
allocation strategy is Pareto-optimal if all other strategies either have a worse value for
at least one of the RT and IOPS criteria or have the same value for both. In this way, we
will have a Pareto front set of optimal strategies that provide an appropriate trade-off
between both metrics. To include a larger set of allocation strategies in our analysis,
we can use the notion of Pareto ranking [Marler and Arora 2004]. More precisely, all
Pareto-optimal frontiers receive a rank of zero (simply rank-0). Then, these rank-0
allocation strategies are temporarily removed from consideration and the Pareto front
set is determined for the remaining ones. The strategies of the new Pareto front are
given a rank of one (simply rank-1) and are considered the second-class strategies for
optimal PLAlloc implementation.

For different workload categories, Table VI shows the list of allocation strategies that
are on the Pareto fronts of rank-0 and rank-1. As can be seen, D is a rank-0 frontier for
all workload categories and provides the best performance results among all allocation
strategies. P and F strategies are on either of rank-0 or rank-1 frontiers for all workload
categories and hence may be suitable choices for PLAlloc. For each workload category,
we further define the optimal set of allocation strategies consisting of the members
of both rank-0 and rank-1 Pareto fronts. Members of the optimal set can be consid-
ered as appropriate PLAlloc design choices for the corresponding workload category.
For the read-dominant small-sized category, CD, D, P, and F strategies constitute the
optimal set, and IOPS and RT can be improved by up to 2.0x and 17%, respectively.
For read-dominant large-sized workloads, optimal set includes CD, DW, D, P, and F
dynamic allocation strategies. A maximum of 1.3x IOPS improvement and 18% RT
improvement is achieved for this workload category. The write-dominant small-sized
workloads greatly benefit from dynamic resource allocation, and their optimal set in-
cludes D, P, and F strategies with maximum IOPS and RT improvements of 3.2x and
44%, respectively. Finally, for write-dominant large-sized workloads, DC, D, P, and F
strategies form the optimal set with up to 2.8x IOPS and 44% RT improvements.

5.2. High-End SSDs Based on SLC NAND Flash

Figure 5(b) depicts the fairness results of PLAlloc strategies for the SSD-SLC config-
uration. The trend in the results is quite similar to that for SSD-MLC (Figure 5(a))
(i.e., fairness is proportionally improved when the freedom degree is increased). The
best results are always achieved for F, C, P, and D strategies, whereas strategies with
degree-2 freedom, such as CW, CD, CP, and WC are ranked second. In addition, the
results of Figure 6 show a similar behavior in SSD-SLC and SSD-MLC for the type
of executed operations. It is noteworthy that the share of multiplane operations is re-
duced in SSD-SLC because of its higher number of dies (256 vs. 64), which decreases
the probability of finding flash operations within a die satisfying multiplane execution
conditions.

Comparison of the waiting time results for SSD-SLC and SSD-MLC in Figure 7 shows
that dynamism has less impact on program operation in SSD-SLC, whereas it may
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Table VII. Pareto Fronts of Allocation Strategies in Terms of IOPS and RT Criteria for SSD-SLC

Rank-0 Rank-1 Optimal Set (IOPS / RT)
Read-Dominant Small-Sized P CP, PD, C, F CP(1.2x/2%), PD(1.2x/1%), C(1.2x/2%), P(1.3x/3%),

F(1.2x/1%)
Read-Dominant Large-Sized P, F D D(1.1x/4%), P(1.2x/4%), F(1.2x/5%)
Write-Dominant Small-Sized P PD, D, F PD(8.9x/24%), D(9.5x/23%), P(9.6x/25%), F(9.5x/24%)
Write-Dominant Large-Sized P, F PD, D PD(3.2x/19%), D(3.3x/17%), P(3.4x/20%), F(3.4x/20%)
Note: For each workload category, the optimal set is defined to include members of both rank-0 and rank-1
Pareto fronts.

negatively increase read waiting time of many degree-1 and degree-2 strategies, espe-
cially in read-dominant workloads. However, read/program waiting time may desirably
be improved when CID allocation is prioritized over other resources, as in CWD, CWP,
CW, CD, CP, C, and D. In short, availability of channel-level and way-level resources
in this high-end configuration reduces the probability of intrarequest resource con-
tention, and hence dynamism has less chance of enhancing LPA striping with respect
to static strategies. Therefore, the maximum RT improvement, shown in Figure 8(b),
is almost inconsiderable in read-dominant workloads, but it is increased to 25% for
write-dominant ones. On the other hand, the better fairness and die- and plane-level
parallelisms in dynamic allocation strategies can be used in favor of efficient utiliza-
tion of highly parallel architecture of SSD-SLC to improve IOPS in write-dominant
workloads. The maximum IOPS is thus surprisingly improved by up to 9.5x for write-
dominant workloads, whereas it is limited to 1.2x for read-dominant ones.

Table VII provides the summary of SSD-SLC results in terms of Pareto fronts of
rank-0 and rank-1 and the optimal set of allocation strategies. Here, we separately
describe the results for each workload category. The optimal set of read-dominant
small-sized workloads includes CP, PD, C, P, and F strategies, and the maximum IOPS
and RT improvement rates are limited to 1.3x and 3%, respectively. For the read-
dominant large-sized category, D, P, and F strategies constitute the optimal set, and
the maximum IOPS and RT improvements are as small as 1.2x and 5%, respectively. On
the contrary, the write-dominant small-sized workloads greatly benefit from dynamic
allocation. In this category, the maximum gain of using dynamism is as high as 9.6x
for IOPS and 25% for RT, and the optimal set includes PD, D, P, and F strategies.
Finally, the optimal set for write-dominant large-sized workloads includes PD, D, P,
and F strategies with up to 3.4x IOPS and 20% RT improvement.

6. THE STEADY-STATE BEHAVIOR OF ALLOCATION STRATEGIES

Thus far, we have analyzed the effects of dynamic allocation strategies with no concern
on GC. Such an evaluation, however, is not thorough, as SSDs spend a major fraction
of their lifetime in the presence of GC. Many previous studies have shown the negative
impacts of GC execution on both I/O performance and flash endurance [Bux et al. 2012;
Lee et al. 2013; Van Houdt 2013b; Iliadis 2014; Van Houdt 2014]. Our experiments
also show that in write-dominant workloads, GC can block numerous read/program
operations, and once a GC starts, the average operation waiting time and RT are
increased. In addition, GC overheads reduce the available bandwidth, especially in
resource-limited SSD-MLC, and IOPS may be decreased. In this section, we take into
account the interaction between allocation strategies and GC to make our findings finer,
especially for write-dominant workloads. To this end, we investigate the impact of GC
on the performance of SSD-MLC and SSD-SLC in Section 6.1. In particular, we show
how much of the GC overheads can be eliminated using dynamic resource allocation.
Next, in Section 6.2, we study the impact of dynamism on P/E cycles of flash blocks. Our
results show that better fairness of dynamic allocation greatly helps to achieve finer
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Fig. 9. Behavior of the SSD in the first four rounds of replaying prn-0. The average RT value from the
beginning of each replay round (RT-REP) and the average RT value from simulation start point (RT-SST)
are shown.

wear leveling and reduces the erase variance of flash blocks. Finally, in Section 6.3,
we provide deeper insight into the behavior of dynamic allocation strategies through
microbenchmarking. Note that for the purpose of simple illustration and to concentrate
on best design alternatives, all evaluations of this section are just performed on the
strategies included in the optimal sets presented in Tables VI and VII. Therefore, CD,
DC, DW, D, P, and F strategies are used for SSD-MLC evaluation, whereas CP, PD,
C, D, P, and F strategies are used for SSD-SLC. In addition, we used CWDP as a
representative of static allocation strategies and a reference for comparison. For most
workload types, CWDP is ranked among top five best static strategies.

6.1. The Steady-State Performance

We assume an SSD to be in its steady state when GC is regularly performed and its
rate is nearly stable over a long time. We employ workload replay to force an SSD
working in the steady state [Murugan and Du 2011; Li et al. 2013]. Here, a workload
trace is repeatedly, and in different rounds, fed into the simulator, and the replay
process continues up to a point that GC is triggered. Then, simulation is continued
until variations in average GC rate and average RT become lower than 1% for the last
five rounds. This method introduces an acceptable criterion for asserting a simulated
system to be in its steady state [Pawlikowski 1990]. For better understanding of the
replay process, Figure 9 shows SSD behavior within a window of the first four replays
for a typical workload (i.e., prn-0). For performance analysis in the steady state, we
define two metrics using the variations of RT in long-term simulation: RT-SST (Start
to Steady-sTate) and RT-REP (REPlay). At a specific simulation time, RT-SST refers
to the average RT seen by I/O requests from the beginning of simulation, and RT-REP
represents the average RT from the beginning of the current reply round. We remark
that (1) RT-SST and RT-REP curves are similar during the first replay round, and
(2) after the initial simulation cycles, RT-SST converges to a fixed value, but RT-REP
shows fluctuations following the temporal variations of the workload.

We applied our steady-state simulation methodology to SSD-SLC and SSD-MLC
considering all 32 workloads listed in Table IV. We observed that for read-dominant
workloads, the performance variation between initial and steady-state results was
negligible (as shown in Figure 11). Hence, we mainly concentrate on the behavior
of allocation strategies under write-dominant workloads. Figures 10(a) and 10(b) re-
spectively show the steady-state behavior of SSD-MLC and SSD-SLC for different
allocation strategies. Due to lack of space, we have presented the results for exch as
an example of write-dominant workloads (also, DW is not shown for SSD-MLC and
CP for SSD-SLC). Each chart corresponds to one allocation strategy and reports the
performance in terms of RT-SST (left y-axis of the upper plot) and RT-REP (right y-
axis of the upper plot), as well as the average GC rate from the start time until the
steady state (GC-SST in the lower plot expressed in the unit of GC execution counts
per second). Clearly, GC overheads affect the performance of allocation strategies, but
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Fig. 10. The effect of PLAlloc strategies on the steady-state behavior of the SSD in SSD-MLC (a) and SSD-
SLC (b). The results are achieved for replaying exch workload, and the scales of RT-REP and RT-SST are set
to be different for better illustration. The average GC rate from the beginning of the simulation is depicted
in the lower plots (black curves) in the unit of GC execution counts per second (GC/s).

Fig. 11. Steady-state performance of allocation strategies in SSD-MLC (a) and SSD-SLC (b). SS and INIT
abbreviations stand for steady-state and initial state results, respectively. The results are normalized with
respect to CWDP in a similar manner to Figure 5. Higher IOPS and lower RT values are desirable. Dynamic
allocations always achieve greater RT improvement in the steady state, but IOPS improvement may be
negatively reduced due to GC interference.

the severity of variations/degradations in performance highly depends on the degree
of freedom, priority of resources allocation, and SSD configuration. For SSD-MLC, the
RT-SST curve of CWDP, CD, DC, and D strategies rises as the GC execution rate in-
creases in GC-SST, whereas the impact of GC execution on RT-SST is almost negligible
for P and F strategies. The values of the RT-REP curve for D, P, and F strategies
vary in a much smaller range when compared to the results of CWDP, CD, and DC.
In particular, CWDP results show a sudden increase, and the range of variations is
six times larger than that of D, P, and F. This means that SSD performance is more
predictable under dynamic allocation strategies, particularly those with degree-3 or
degree-4 freedom. In a nutshell, the average and instantaneous performance of static
allocation strategies are more sensitive to GC execution, whereas dynamic allocations
with high freedom degrees can greatly tolerate the negative effects of GC. The best
RT results are achieved for P strategy. For SSD-SLC, the variations of RT-SST and
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RT-REP due to GC execution is insignificant, as higher number of channel-level and
way-level resources together with better performance of SLC NAND flash help to hide
the negative impact of read, program, and erase operations of GC. Yet RT-REP values
vary in a wider range for CWDP, whereas the changes are limited into a narrow range
in dynamic allocations; note that similar to SSD-MLC, P strategy provides the best
results.

Figure 11 depicts the steady-state performance of SSD-MLC and SSD-SLC under
different workload categories (labeled IOPS-SS and RT-SS). The normal simulation
results, achieved in Section 5, are also included in the plots (labeled IOPS-INIT and
RT-INIT) to highlight performance variations from the initial to steady state. As men-
tioned before, performance variations in read-dominant workloads are almost negligi-
ble, whereas under write-dominant workloads, IOPS and RT are greatly affected by
GC. Interestingly, RT-SS values of dynamic strategies are always better (smaller) than
RT-INIT results in both SSD-MLC and SSD-SLC under write-dominant workloads. In
fact, if a program operation is blocked due to GC tasks, then a dynamic strategy has
the chance to map it to an idle resource to relieve the long blocking time of normal
I/O operations due to GC. However, comparing IOPS-INIT and IOPS-SS of SSD-MLC
reveals that the IOPS improvement rate does not change noticeably for P and F, and
it may even decrease for CD, DC, DW, and D strategies. As a matter of fact, in the
steady state, components of the resource-limited SSD-MLC may be engaged in a GC
process, and hence dynamic strategies have less chance to exploit interrequest paral-
lelism in favor of IOPS. Contrarily, in SSD-SLC, the higher amount of resources are
still enough for simultaneous handling of consecutive I/O requests even in the presence
of GC. Hence, IOPS of SSD-SLC is less affected in the steady state for most dynamic
allocation strategies. In sum, steady-state simulations show that RT improvement of
dynamic strategies is as high as 56% for SSD-MLC and 32% for SSD-SLC. Further-
more, dynamism can provide up to 3.3x and 9.6x IOPS improvement for SSD-MLC and
SSD-SLC, respectively.

6.2. The Impact of Dynamism on P/E Cycles

A good allocation strategy can support a wear-leveling primitive of the FTL through
better distribution of P/E operations among the whole set of planes within the SSD.
This reduces the variations of erase counts among flash blocks of different planes.
Static strategies cannot help wear leveling due to their deterministic nature of plane
allocation, which may lead to unfair distribution of program operations based on LPA
accesses. Dynamic allocation strategies, on the other hand, can fairly distribute flash
operations, as our previous discussion on the results of Figure 5 revealed the excellent
fairness of degree-3 and degree-4 strategies.

Figure 12 illustrates the impact of dynamism on SSD endurance in terms of the
standard deviation of block erase count (STD-ERASE) and difference of maximum-
minimum block erase count (DIFF-ERASE). The lower values for the mentioned criteria
mean finer distribution of block erases and better wear leveling. Based on the results,
we can deduce that dynamism greatly improves wear leveling of SSD-MLC and SSD-
SLC and hence helps to enhance their life span. The results show that dynamism can
lead to up to 88% reduction in STD-ERASE and 87% reduction in DIFF-ERASE for
SSD-MLC. In SSD-SLC, STD-ERASE and DIFF-ERASE are sharply reduced by up to
96% and 96%, respectively.

6.3. Microbenchmarking

We also conducted microbenchmarking simulations by varying I/O request sizes and
read/write ratios for steady-state investigation of SSD-MLC and SSD-SLC. In our
experiments, LPAs are uniformly distributed over user storage space, and the temporal
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Fig. 12. The effect of dynamic allocation strategies on P/E cycles of flash blocks in SSD-MLC (a) and SSD-
SLC (b). The metrics are a standard deviation of the block erase count (STD-ERASE) and the difference
between maximum and minimum block erase counts (DIFF-ERASE). The lower values of both criteria are
desirable, as they work in favor of SSD endurance. The results are normalized in a similar manner to
Figure 5.

Fig. 13. Microbenchmarking results for steady-state evaluation of allocation strategies in SSD-MLC (a) and
SSD-SLC (b). In most cases, degree-3 strategies are ranked first.

model of request generation is Poisson with average interarrival time of 1 ms; the
percentage of read requests is set to be 30% and 70% for different scenarios, and the
average request size varies between 0.5KB and 128KB for each scenario. As can be
seen in Figure 13(a), the results for SSD-MLC show impressive performance impact of
dynamic strategies, especially when using D. In fact, IOPS results of D are considerably
higher than those of CWDP (and even better than other dynamic strategies). Regarding
RT results, D ranked first in the 70%-read (read-dominant) scenario, whereas best
results are achieved for P in the 30%-read (write-dominant scenario).

Figure 13(b) depicts the microbenchmarking results of SSD-SLC. As expected, dy-
namism enhances the IOPS of SSD-SLC in the read-dominant scenario, and the results
of F, P, D, and PD are a little better than other dynamic strategies. Increasing the write
ratio greatly enhances the IOPS improvement rate of dynamic strategies, and P is
ranked first in the 30%-read scenario. Regarding RT results, the values of C and CP
are slightly better than other strategies in the 70%-read scenario, whereas P is ranked
first in the 30%-read scenario. As a final point, RT results of the 70%-read scenario
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Fig. 14. Comparison of dynamic allocation strategies regarding the mapping table size and performance
and endurance metrics in SSD-MLC (a) and SSD-SLC (b). For each SSD configuration, strategies in the
optimal sets are considered.

support our previous conclusion that the resources of SSD-SLC are enough to equally
decrease the chance of intrarequest contention for both static and dynamic strategies.

7. SUMMARY

Selecting an appropriate allocation strategy generally depends on design goals and re-
strictions, and even a low performance strategy may be preferred due to memory size or
endurance considerations of the design. Therefore, our final suggestion for SSD-MLC
and SSD-SLC includes all allocation strategies in their optimal sets. Figure 14 illus-
trates a comparison of these strategies based on their mapping table size and IOPS,
RT, and endurance results. For better illustration, a single average value is reported as
a representative of small-sized and large-sized workloads. For example, READ IOPS
is the average value of IOPS improvement for read-dominant small-sized and read-
dominant large-sized categories. In SSD-MLC, D provides excellent read/write perfor-
mance with no overhead on the mapping table size, whereas F is ranked first regarding
endurance metrics but requires a larger mapping table size and achieves lower I/O per-
formance, especially for reads. In SSD-SLC, CP, PD, and C may be preferred due to
their better READ RT and lower table size overheads, whereas P is a suitable choice
due to its outstanding write performance. Furthermore, F provides the best endurance
and ranked second regarding performance metrics. However, F incurs the highest cost
on the size of the mapping table. Please note that our conclusions generally character-
ize dynamic allocation strategies for SSD-MLC and SSD-SLC, but the final selection
should be made based on the configuration and working conditions of the target SSD.

8. RELATED WORK

Parallelism plays a vital role in achieving performance desires in modern SSDs, and
efficient utilization of highly parallel resources has been the main focus of various
studies [Chen et al. 2011; Jung et al. 2012, 2014]. Among them, some studies have
concentrated on design space exploration of page allocation strategies to better exploit
parallelism through enhanced address striping. Shin et al. [2009] investigated a small
set of static allocation strategies with highest priority for CID allocation. Variations
of fully dynamic allocation were also proposed and investigated in different works as
the only solution to benefit from dynamism [Shin et al. 2009; Park et al. 2010b]. Hu
et al. [2011] investigated the interaction of different levels of parallelism and ana-
lyzed the impact of SSD configuration on the performance of static and fully dynamic
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strategies. Jung and Kandemir [2012] proposed a thorough analysis of all possible 24
static allocation strategies and provided new insight about the role of intrachip paral-
lelism for performance enhancement. To the best of our knowledge, there has been no
work that explicitly investigates the benefits of utilizing different freedom degrees in
allocation strategies. Moreover, past studies have reported their results with no dis-
cussion on steady-state behavior, whereas in this work we have thoroughly explored
our idea under such realistic conditions.

Other studies have concentrated on the scheduling policies that help to resolve re-
source contention among flash transactions and to increase the chance of parallel
executions at different levels of the SSD internal parallelism. As we discussed in Sec-
tion 4.3, a good allocation strategy should be augmented with a fine-tuned scheduler to
efficiently exploit SSD parallel resources. Park et al. proposed a dynamic transaction
rescheduling algorithm to increase the chance of multiplane command execution [Park
et al. 2010b]. Ozone provides a hardware-assisted scheduling mechanism for I/O re-
quests [Nam et al. 2011]. This mechanism explores data dependency among I/O re-
quests and reorders safe requests to better exploit channel- and chip-level parallelism.
Jung et al. proposed PAQ, a software-assisted dynamic scheduler that concentrates
on out-of-order execution of read transactions to increase the utilization of channel-,
chip-, and plane-level parallelism [Jung et al. 2012]. Sprinkler is a state-of-the-art I/O
scheduler that maximizes resource utilization at all parallelism levels and reduces the
overall number of flash transactions through enhanced incorporation of multiplane
and interleaved commands [Jung and Kandemir 2014]. Recently, HIOS, a new host
interface I/O scheduler, was proposed that tries to reduce the negative performance
impacts of GC execution and meet the QoS requirements of I/O requests [Jung et al.
2014]. HIOS tries to distribute the resource conflict overheads and GC costs over non-
critical I/O requests to meet the deadline requirements of host I/O requests and reduce
RT variations. Such high-performance schedulers in conjunction with a dynamic allo-
cation strategy of degree-3 can substantially reduce the steady-state SSD performance
sensitivity to GC execution overheads.

9. CONCLUSION

Efficient utilization of parallel resources greatly impacts the performance of the SSD.
In this article, we proposed a new set of allocation strategies based on dynamic resource
assignment to achieve better striping of flash transactions and decrease the probability
of resource conflicts. Our extensive simulation experiments uncovered the superior
performance of dynamic allocation strategies with three degrees of freedom for both
midrange and high-end SSDs. Our results especially showed that dynamic strategies
are most favored (with respect to static ones) in resource-limited midrange and client
SSDs. Furthermore, our steady-state simulation revealed that dynamism greatly helps
to mitigate performance and endurance side effects of GC.
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